Software and High-Performance Computing

Distributed One-Stage Hessenberg-Triangular Reduction with Wavefront Scheduling

Abstract

A novel parallel formulation of Hessenberg-triangular reduction of a regular matrix pair on distributed memory computers is presented. The formulation is based on a sequential cache-blocked algorithm by Kågström et al. [BIT, 48 (2008), pp. 563--584]. A static scheduling algorithm is proposed that addresses the problem of underutilized processes caused by two-sided updates of matrix pairs based on sequences of rotations. Experiments using up to 961 processes demonstrate that the new formulation is an improvement of the state of the art and also identify factors that limit its scalability.

Keywords

  1. generalized eigenvalue problem
  2. Hessenberg-triangular reduction
  3. parallel algorithms
  4. wavefront scheduling

MSC codes

  1. 65F15
  2. 15A18

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Adlerborn, K. Dackland, and B. Kågström, Parallel two-stage reduction of a regular matrix pair to Hessenberg-Triangular form, in Applied Parallel Computing, PARA 2000, T. Sørevik, F. Manne, A. H. Gebremedhin, and R. Moe, eds., Lecture Notes in Comput. Sci. 1947, Springer, Berlin, 2000, pp. 92--102.
2.
B. Adlerborn, K. Dackland, and B. Kågström, Parallel and blocked algorithms for reduction of a regular matrix pair to Hessenberg-Triangular and generalized Schur forms, in Applied Parallel Computing, PARA 2002, J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, P. R\raback, and V. Savolainen, eds., Lecture Notes in Comput. Sci. 2367, Springer, Berlin, 2002, pp. 319--328.
3.
B. Adlerborn, B. Kågström, and D. Kressner, Parallel variants of the multishift QZ algorithm with advanced deflation techniques, in Applied Parallel Computing, PARA 2006, B. Kågström, E. Elmroth, J. Dongarra, and J. Waśniewski, eds., Lecture Notes in Comput. Sci. 4699, Springer, Berlin, 2006, pp. 117--126.
4.
B. Adlerborn, B. Kågström, and D. Kressner, A parallel QZ algorithm for distributed memory HPC systems, SIAM J. Sci. Comput., 36 (2014), pp. C480--C503.
5.
C. Bischof, A Summary of Block Schemes for Reducing a General Matrix to Hessenberg Form, Technical report ANL/MSC-TM-175, Argonne National Laboratory, 1993.
6.
C. H. Bischof and C. F. Van Loan, The ${W}{Y}$ representation for products of Householder matrices, SIAM J. Sci. Statist. Comput., 8 (1987), pp. S2--S13.
7.
L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users' Guide, SIAM, Philadelphia, 1997.
8.
K. Dackland and B. Kågström, A ScaLAPACK-style algorithm for reducing a regular matrix pair to block Hessenberg-Triangular form, in Applied Parallel Computing, PARA 1998, B. Kågström, J. Dongarra, E. Elmroth, and J. Waśniewski, eds., Lecture Notes in Comput. Sci. 1541, Springer, Berlin, 1998, pp. 95--103.
9.
K. Dackland and B. Kågström, Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form, ACM Trans. Math. Software, 25 (1999), pp. 425--454.
10.
B. Kågström and D. Kressner, Multishift variants of the QZ algorithm with aggressive early deflation, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 199--227.
11.
B. Kågström, D. Kressner, E. S. Quintana-Ortí, and G. Quintana-Ortí, Blocked algorithms for the reduction to Hessenberg-triangular form revisited, BIT, 48 (2008), pp. 563--584.
12.
B. Lang, Using level 3 BLAS in rotation-based algorithms, SIAM J. Sci. Comput., 19 (1998), pp. 626--634.
13.
C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241--256.
14.
R. C. Ward, The combination shift QZ algorithm, SIAM J. Numer. Anal., 12 (1975), pp. 835--853.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C157 - C180
ISSN (online): 1095-7197

History

Submitted: 16 November 2016
Accepted: 14 December 2017
Published online: 13 March 2018

Keywords

  1. generalized eigenvalue problem
  2. Hessenberg-triangular reduction
  3. parallel algorithms
  4. wavefront scheduling

MSC codes

  1. 65F15
  2. 15A18

Authors

Affiliations

Funding Information

Swedish Government
Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 671633
Svenska Forskningsrådet Formas https://doi.org/10.13039/501100001862 : A0581501

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media