Abstract

We develop two fast algorithms for Hessenberg reduction of a structured matrix $A = D + UV^H$, where $D$ is a real or unitary $n \times n$ diagonal matrix and $U, V \in\mathbb{C}^{n \times k}$. The proposed algorithm for the real case exploits a two-stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted subdiagonals. It is shown that the novel method requires $O(n^2k)$ arithmetic operations and is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of $\Re(D)$ induces a structured reduction on $A$ in a block staircase CMV-type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and show how to generalize the subdiagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in $k$ and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.

Keywords

  1. Hessenberg reduction
  2. quasi-separable matrices
  3. bulge chasing
  4. CMV matrix
  5. complexity

MSC codes

  1. 65F15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polynomials expressed in polynomial bases, IMA J. Numer. Anal., 29 (2009), pp. 141--157, https://doi.org/10.1093/imanum/drm051.
2.
G. S. Ammar and W. B. Gragg, $O(n^2)$ reduction algorithms for the construction of a band matrix from spectral data, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 426--431, https://doi.org/10.1137/0612030.
3.
P. Arbenz and G. H. Golub, On the spectral decomposition of Hermitian matrices modified by low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40--58, https://doi.org/10.1137/0609004.
4.
Y. Arlinskiĭ, Conservative discrete time-invariant systems and block operator CMV matrices, Methods Funct. Anal. Topology, 15 (2009), pp. 201--236.
5.
R. Bevilacqua, G. M. Del Corso, and L. Gemignani, A CMV-based eigensolver for companion matrices, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1046--1068, https://doi.org/10.1137/140978065.
6.
R. Bevilacqua, G. M. Del Corso, and L. Gemignani, Compression of unitary rank-structured matrices to CMV-like shape with an application to polynomial rootfinding, J. Comput. Appl. Math., 278 (2015), pp. 326--335, https://doi.org/10.1016/j.cam.2014.09.023.
7.
D. A. Bini and L. Robol, On a class of matrix pencils and $\ell$-ifications equivalent to a given matrix polynomial, Linear Algebra Appl., 502 (2016), pp. 275--298, https://doi.org/10.1016/j.laa.2015.07.017.
8.
D. A. Bini and L. Robol, Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications, Linear Algebra Appl., 502 (2016), pp. 186--213, https://doi.org/10.1016/j.laa.2015.08.026.
9.
C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM Trans. Math. Software, 26 (2000), pp. 581--601, https://doi.org/10.1145/365723.365735.
10.
A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra Appl., 154/156 (1991), pp. 741--778, https://doi.org/10.1016/0024-3795(91)90402-I.
11.
M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., 362 (2003), pp. 29--56, https://doi.org/10.1016/S0024-3795(02)00457-3.
12.
S. Delvaux and M. Van Barel, A Hessenberg reduction algorithm for rank structured matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 895--926, https://doi.org/10.1137/060658953.
13.
Y. Eidelman, L. Gemignani, and I. Gohberg, Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations, Numer. Algorithms, 47 (2008), pp. 253--273, https://doi.org/10.1007/s11075-008-9172-0.
14.
Y. Eidelman, I. Gohberg, and L. Gemignani, On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms, Linear Algebra Appl., 420 (2007), pp. 86--101, https://doi.org/10.1016/j.laa.2006.06.028.
15.
Y. Eidelman, I. Gohberg, and I. Haimovici, Separable Type Representations of Matrices and Fast Algorithms. Vol. 1: Basics. Completion Problems. Multiplication and Inversion Algorithms, Oper. Theory Adv. Appl. 234, Birkhäuser/Springer, Basel, 2014.
16.
Y. Eidelman, I. Gohberg, and I. Haimovici, Separable Type Representations of Matrices and Fast Algorithms. Vol. 2: Eigenvalue Method, Oper. Theory Adv. Appl. 235, Birkhäuser/Springer, Basel, 2014.
17.
M. Fiedler and T. L. Markham, Completing a matrix when certain entries of its inverse are specified, Linear Algebra Appl., 74 (1986), pp. 225--237, https://doi.org/10.1016/0024-3795(86)90125-4.
18.
I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Classics Appl. Math., Academic Press, New York, 1982.
19.
W. H. Gustafson, A note on matrix inversion, Linear Algebra Appl., 57 (1984), pp. 71--73, https://doi.org/10.1016/0024-3795(84)90177-0.
20.
B. K\aagström, D. Kressner, E. S. Quintana-Ortí, and G. Quintana-Ortí, Blocked algorithms for the reduction to Hessenberg-triangular form revisited, BIT, 48 (2008), pp. 563--584, https://doi.org/10.1007/s10543-008-0180-1.
21.
R. Killip and I. Nenciu, CMV: The unitary analogue of Jacobi matrices, Comm. Pure Appl. Math., 60 (2007), pp. 1148--1188, https://doi.org/10.1002/cpa.20160.
22.
B. Simon, CMV matrices: five years after, J. Comput. Appl. Math., 208 (2007), pp. 120--154, https://doi.org/10.1016/j.cam.2006.10.033.
23.
M. Van Barel and A. Bultheel, Orthonormal polynomial vectors and least squares approximation for a discrete inner product, Electron. Trans. Numer. Anal., 3 (1995), pp. 1--23.
24.
R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices. Vol. I: Linear Systems, Johns Hopkins University Press, Baltimore, MD, 2008.
25.
R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices. Vol. II: Eigenvalue and Singular Value Methods, Johns Hopkins University Press, Baltimore, MD, 2008.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 574 - 598
ISSN (online): 1095-7162

History

Submitted: 13 December 2016
Accepted: 2 May 2017
Published online: 22 June 2017

Keywords

  1. Hessenberg reduction
  2. quasi-separable matrices
  3. bulge chasing
  4. CMV matrix
  5. complexity

MSC codes

  1. 65F15

Authors

Affiliations

Funding Information

Belgian Network DYSCO
Istituto Nazionale di Alta Matematica
Onderzoeksraad, KU Leuven https://doi.org/10.13039/501100004497 : CREA/13/012

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media