Abstract

In this paper, we suggest a new heterogeneous multiscale method (HMM) for the Helmholtz equation with high contrast. The method is constructed for a setting as in Bouchitte and Felbacq [C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 377-382], where the high contrast in the parameter leads to unusual effective parameters in the homogenized equation. We revisit existing homogenization approaches for this special setting and analyze the stability of the two-scale solution with respect to the wavenumber and the data. This includes a new stability result for solutions to the Helmholtz equation with discontinuous diffusion matrix. The HMM is defined as direct discretization of the two-scale limit equation. With this approach we are able to show quasi-optimality and an a priori error estimate under a resolution condition that inherits its dependence on the wavenumber from the stability constant for the analytical problem. Numerical experiments confirm our theoretical convergence results and examine the resolution condition. Moreover, the numerical simulation gives a good insight and explanation of the physical phenomenon of frequency band gaps.

Keywords

  1. multiscale method
  2. finite elements
  3. homogenization
  4. two-scale convergence
  5. Helmholtz equation

MSC codes

  1. 35J05
  2. 35B27
  3. 65N12
  4. 65N15
  5. 65N30
  6. 78M40

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), pp. 447--459, https://doi.org/10.1137/040607137.
2.
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518, https://doi.org/10.1137/0523084.
3.
I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322--333, https://doi.org/10.1007/BF02165003.
4.
I. M. Babuška and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34 (1997), pp. 2392--2423, https://doi.org/10.1137/S0036142994269186.
5.
D. Baskin, E. A. Spence, and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM J. Math. Anal., 48 (2016), pp. 229--267, https://doi.org/10.1137/15M102530X.
6.
P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE, Computing, 82 (2008), pp. 121--138, https://doi.org/10.1007/s00607-008-0004-9.
7.
P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework, Computing, 82 (2008), pp. 103--119, https://doi.org/10.1007/s00607-008-0003-x.
8.
T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation, Numer. Methods Partial Differential Equations, 27 (2011), pp. 31--69, https://doi.org/10.1002/num.20643.
9.
A. Bossavit, G. Griso, and B. Miara, Modelling of periodic electromagnetic structures bianisotropic materials with memory effects, J. Math. Pures Appl. (9), 84 (2005), pp. 819--850, https://doi.org/10.1016/j.matpur.2004.09.015.
10.
G. Bouchitté, C. Bourel, and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), pp. 571--576, https://doi.org/10.1016/j.crma.2009.02.027.
11.
G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 377--382, https://doi.org/10.1016/j.crma.2004.06.018.
12.
G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), pp. 717--750, https://doi.org/10.1137/09074557X.
13.
G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings, Netw. Heterog. Media, 8 (2013), pp. 857--878, https://doi.org/10.3934/nhm.2013.8.857.
14.
D. Brown, D. Gallistl, and D. Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations, in Meshfree Methods for Partial Differential Equations VIII, M. Griebel and M. A. Schweitzer, eds., Lect. Notes Comput. Sci. Eng. 115, 2017, Springer, Cham, Switzerland, pp. 85--115, https://doi.org/10.1007/978-3-319-51954-8_6.
15.
L.-Q. Cao, J.-Z. Cui, and D.-C. Zhu, Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general convex domains, SIAM J. Numer. Anal., 40 (2002), pp. 543--577, https://doi.org/10.1137/S0036142900376110.
16.
H. Chen, P. Lu, and X. Xu, A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number, SIAM J. Numer. Anal., 51 (2013), pp. 2166--2188, https://doi.org/10.1137/120883451.
17.
K. Cherednichenko and S. Cooper, Homogenization of the system of high-contrast Maxwell equations, Mathematika, 61 (2015), pp. 475--500, https://doi.org/10.1112/S0025579314000424.
18.
P. Ciarlet, Jr. and C. Stohrer, Finite-element heterogeneous multiscale method for the Helmholtz equation, C. R. Math. Acad. Sci. Paris, 352 (2014), pp. 755--760, https://doi.org/10.1016/j.crma.2014.07.006.
19.
W. Dörfler and S. Sauter, A posteriori error estimation for highly indefinite Helmholtz problems, Comput. Methods Appl. Math., 13 (2013), pp. 333--347, https://doi.org/10.1515/cmam-2013-0008.
20.
W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87--132, http://projecteuclid.org/euclid.cms/1118150402.
21.
W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 44, Springer, Berlin, 2005, pp. 89--110, https://doi.org/10.1007/3-540-26444-2_4.
22.
W. E, P. Ming, and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), pp. 121--156, https://doi.org/10.1090/S0894-0347-04-00469-2.
23.
A. Efros and A. Pokrovsky, Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability, Solid State Commun., 129 (2004), pp. 643--647, https://doi.org/10.1016/j.ssc.2003.12.022.
24.
S. Esterhazy and J. M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, Lect. Notes Comput. Sci. Eng. 83, Springer, Heidelberg, 2012, pp. 285--324, https://doi.org/10.1007/978-3-642-22061-6_9.
25.
S. Esterhazy and J. M. Melenk, An analysis of discretizations of the Helmholtz equation in L^2 and in negative norms, Comput. Math. Appl., 67 (2014), pp. 830--853, https://doi.org/10.1016/j.camwa.2013.10.005.
26.
D. Felbacq and G. Bouchitté, Homogenization of a set of parallel fibres, Waves Random Media, 7 (1997), pp. 245--256, https://doi.org/10.1088/0959-7174/7/2/006.
27.
D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg., 295 (2015), pp. 1--17, https://doi.org/10.1016/j.cma.2015.06.017.
28.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. 224, Springer, Berlin, 1977.
29.
A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul., 5 (2006), pp. 996--1043, https://doi.org/10.1137/060649112.
30.
R. Griesmaier and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comput., 49 (2011), pp. 291--310, https://doi.org/10.1007/s10915-011-9460-z.
31.
P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), pp. 119--150, https://doi.org/10.3934/dcdss.2015.8.119.
32.
P. Henning, M. Ohlberger, and B. Verfürth, A new heterogeneous multiscale method for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 54 (2016), pp. 3493--3522, https://doi.org/10.1137/15M1039225.
33.
U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci., 5 (2007), pp. 665--678, http://projecteuclid.org/euclid.cms/1188405673.
34.
R. Hiptmair, A. Moiola, and I. Perugia, Plane wave discontinuous Galerkin methods: Exponential convergence of the hp-version, Found. Comput. Math., 16 (2016), pp. 637--675, https://doi.org/10.1007/s10208-015-9260-1.
35.
R. Hiptmair, A. Moiola, and I. Perugia, A survey of Trefftz methods for the Helmholtz equation, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, G. R. Barrenechea, A. Cangiani, and E. H. Geogoulis, eds., Lect. Notes Comput. Sci. Eng. 114, Springer, Cham, Switzerland, 2016, pp. 237--278.
36.
F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Appl. Math. Sci. 132, Springer, New York, 1998, https://doi.org/10.1007/b98828.
37.
S. Irimie and P. Bouillard, A residual a posteriori error estimator for the finite element solution of the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 4027--4042, https://doi.org/10.1016/S0045-7825(00)00314-5.
38.
A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), pp. 4155--4174, https://doi.org/10.1137/16M1064246.
39.
D. Lukkassen, G. Nguetseng, and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), pp. 35--86.
40.
C. Luo, S. G. Johnson, J. Joannopolous, and J. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B (3), 65 (2002), 201104(R).
41.
J. M. Melenk, On Generalized Finite-Element Methods, Ph.D. thesis, University of Maryland, College Park, MD, 1995.
42.
J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210--1243, https://doi.org/10.1137/090776202.
43.
A. Moiola and E. A. Spence, Is the Helmholtz equation really sign-indefinite?, SIAM Rev., 56 (2014), pp. 274--312, https://doi.org/10.1137/120901301.
44.
A. Moiola and E. A. Spence, Acoustic Transmission Problems: Wavenumber-Explicit Bounds and Resonance-Free Regions, preprint, https://arxiv.org/abs/1702.00745 (2017).
45.
S. O'Brien and J. B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites, J. Phys. Condens. Matter, 14 (2002), 4035, https://doi.org/10.1088/0953-8984/14/15/317.
46.
M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), pp. 88--114, https://doi.org/10.1137/040605229.
47.
M. Ohlberger and B. Verfürth, Localized orthogonal decomposition for two-scale Helmholtz-type problems, AIMS Math., 2 (2017), pp. 458--478, https://doi.org/10.3934/Math.2017.2.458.
48.
I. Perugia, P. Pietra, and A. Russo, A plane wave virtual element method for the Helmholtz problem, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 783--808, https://doi.org/10.1051/m2an/2015066.
49.
D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp., 86 (2017), pp. 1005--1036, https://doi.org/10.1090/mcom/3156.
50.
M. Petzold, Regularity and Error Estimators for Elliptic Problems with Discontinuous Coefficients, Ph.D. thesis, Freie Universität Berlin, Berlin, 2010.
51.
A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handed material, Phys. B, 338 (2003), pp. 333--337, https://doi.org/10.1016/j.physb.2003.08.015.
52.
A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp., 28 (1974), pp. 959--962, https://doi.org/10.1090/S0025-5718-1974-0373326-0.
53.
F. Schindler, T. Leibner, R. Milk, and S. Kaulmann, dune-gdt: 0RS2016, https://doi.org/10.5281/zenodo.35389 (2016).
54.
V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ep and mu, Soviet Physics Uspekhi, 10 (1968), pp. 509--514, https://doi.org/10.1070/PU1968v010n04ABEH003699.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 385 - 411
ISSN (online): 1540-3467

History

Submitted: 20 December 2016
Accepted: 6 November 2017
Published online: 1 March 2018

Keywords

  1. multiscale method
  2. finite elements
  3. homogenization
  4. two-scale convergence
  5. Helmholtz equation

MSC codes

  1. 35J05
  2. 35B27
  3. 65N12
  4. 65N15
  5. 65N30
  6. 78M40

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : OH 98/6-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media