Open access

A Multigrid Approach to SDP Relaxations of Sparse Polynomial Optimization Problems

Abstract

We propose a multigrid approach for the global optimization of polynomial optimization problems with sparse support. The problems we consider arise from the discretization of infinite dimensional optimization problems, such as PDE optimization problems, boundary value problems, and some global optimization applications. In many of these applications, the level of discretization can be used to obtain a hierarchy of optimization models that capture the underlying infinite dimensional problem at different degrees of fidelity. This approach, inspired by multigrid methods, has been successfully used for decades to solve large systems of linear equations. However, multigrid methods are difficult to apply to semidefinite programming (SDP) relaxations of polynomial optimization problems. The main difficulty is that the information between grids is lost when the original problem is approximated via an SDP relaxation. Despite the loss of information, we develop a multigrid approach and propose prolongation operators to relate the primal and dual variables of the SDP relaxation between lower and higher levels in the hierarchy of discretizations. We develop sufficient conditions for the operators to be useful in practice. Our conditions are easy to verify, and we discuss how they can be used to reduce the complexity of infeasible interior point methods. Our preliminary results highlight two promising advantages of following a multigrid approach compared to a pure interior point method: the percentage of problems that can be solved to a high accuracy is much greater, and the time necessary to find a solution can be reduced significantly, especially for large scale problems.

Keywords

  1. multigrid
  2. semidefinite programming
  3. sparse polynomial optimization
  4. differential equations

MSC codes

  1. 35G30
  2. 65H10
  3. 65N06
  4. 65N22
  5. 65N55
  6. 90C22
  7. 90C26
  8. 90C51
  9. 90C59

Formats available

You can view the full content in the following formats:

References

1.
J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory and Sparse Matrix Computation, IMA Vol. Math. Appl. 56, A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-Verlag, 1993, pp. 1--29.
2.
I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, The maximum clique problem, in Handbook of Combinatorial Optimization, Springer, 1999, pp. 1--74.
3.
A. Borzì, K. Kunisch, and D. Y. Kwak, Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system, SIAM J. Control Optim., 41 (2003), pp. 1477--1497, https://doi.org/10.1137/S0363012901393432.
4.
A. Borzì and V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations, Comput. Sci. Eng. 8, SIAM, 2011, https://doi.org/10.1137/1.9781611972054.
5.
A. Borzì and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev., 51 (2009), pp. 361--395, https://doi.org/10.1137/060671590.
6.
W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719505.
7.
D. Cox, J. Little, and D. O'shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, 1992.
8.
A. Dontchev and W. Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2001), pp. 173--203.
9.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Ann. Discrete Math. 57, Elsevier, 2004.
10.
S. Gratton, A. Sartenaer, and P. L. Toint, Recursive trust-region methods for multiscale nonlinear optimization, SIAM J. Optim., 19 (2008), pp. 414--444, https://doi.org/10.1137/050623012.
11.
D. Henrion and J.-B. Lasserre, Detecting global optimality and extracting solutions in gloptipoly, in Positive Polynomials in Control, Springer, 2005, pp. 293--310.
12.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Math. Model. Theory Appl. 23, Springer Science+Business Media, 2008.
13.
C. P. Ho and P. Parpas, Singularly perturbed Markov decision processes: A multiresolution algorithm, SIAM J. Control Optim., 52 (2014), pp. 3854--3886, https://doi.org/10.1137/130944254.
14.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.
15.
V. Hovhannisyan, P. Parpas, and S. Zafeiriou, Magma: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization, SIAM J. Imaging Sci., 9 (2016), pp. 1829--1857, https://doi.org/10.1137/130944254.
16.
J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001), pp. 796--817, https://doi.org/10.1137/S1052623400366802.
17.
J. B. Lasserre, Convergent SDP-relaxations in polynomial optimization with sparsity, SIAM J. Optim., 17 (2006), pp. 822--843, https://doi.org/10.1137/05064504X.
18.
J. B. Lasserre, An Introduction to Polynomial and Semi-algebraic Optimization, Cambridge Texts Appl. Math. 52, Cambridge University Press, 2015.
19.
J. B. Lasserre, D. Henrion, C. Prieur, and E. Trélat, Nonlinear optimal control via occupation measures and lmi-relaxations, SIAM J. Control Optim., 47 (2008), pp. 1643--1666, https://doi.org/10.1137/070685051.
20.
F. Lin, Z. Di, and S. Leyffer, A multiscale approach to a class of semidefinite programs, to in Proceedings of the 2016 American Control Conference, IEEE, pp. 7153--7158.
21.
M. Mevissen, M. Kojima, J. Nie, and N. Takayama, Solving partial differential equations via sparse sdp relaxations, P. J. Optim., 4 (2008), pp. 213--241.
22.
M. Mevissen, J. B. Lasserre, and D. Henrion, Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations, in Proceedings of the 18th IFAC World Congress on Automatic Control, Elsevier, 2011, pp. 10887--10892.
23.
M. Mevissen, K. Yokoyama, and N. Takayama, Solutions of polynomial systems derived from the steady cavity flow problem, in Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ACM, 2009, pp. 252--262.
24.
J. J. More, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), pp. 17--41.
25.
S. G. Nash, Newton-type minimization via Lanczos method, SIAM J. Numer. Anal., 21 (1984), pp. 770--788, https://doi.org/10.1137/0721052.
26.
S. G. Nash, A multigrid approach to discretized optimization problems, Optim. Methods Softw., 14 (2000), pp. 99--116.
27.
J. Nie and J. Demmel, Sparse SOS relaxations for minimizing functions that are summations of small polynomials, SIAM J. Optim., 19 (2008), pp. 1534--1558, https://doi.org/10.1137/060668791.
28.
I. Papamichail and C. S. Adjiman, A rigorous global optimization algorithm for problems with ordinary differential equations, J. Global Optim., 24 (2002), pp. 1--33.
29.
P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Programming, 96 (2003), pp. 293--320.
30.
P. A. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Algorithmic and Quantitative Real Algebraic Geometry, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60, S. Basu and L. Gonzalez-Vega, eds., American Mathematical Society, 2003, pp. 83--100.
31.
F. A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp. 1007--1028, https://doi.org/10.1137/S1052623495294955.
32.
A. U. Raghunathan and A. V. Knyazev, Degeneracy in maximal clique decomposition for semidefinite programs, in Proceedings of the 2016 American Control Conference (ACC), IEEE, 2016, pp. 5605--5611.
33.
Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718003.
34.
K.-C. Toh, M. J. Todd, and R. H. Tütüncü, On the implementation and usage of sdpt3--a MATLAB software package for semidefinite-quadratic-linear programming, version 4.0, in Handbook on Semidefinite, Conic and Polynomial Optimization, Springer, 2012, pp. 715--754.
35.
L. Vandenberghe and M. S. Andersen, Chordal Graphs and Semidefinite Optimization, Now Publishers Incorporated, 2015.
36.
H. Waki, S. Kim, M. Kojima, and M. Muramatsu, Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity, SIAM J. Optim., 17 (2006), pp. 218--242, https://doi.org/10.1137/050623802.
37.
H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto, Algorithm 883: Sparsepop---a sparse semidefinite programming relaxation of polynomial optimization problems, ACM Trans. Math. Software (TOMS), 35 (2008), 15.
38.
T. Weisser, J. B. Lasserre, and K.-C. Toh, Sparse-bsos: A bounded degree SOS hierarchy for large scale polynomial optimization with sparsity, Math. Prog. Comput., 2017, pp. 1--32, https://doi.org/10.1007/s12532-017-0121-6.
39.
Z. Wen and D. Goldfarb, A line search multigrid method for large-scale nonlinear optimization, SIAM J. Optim., 20 (2009), pp. 1478--1503, https://doi.org/10.1137/08071524X.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 1 - 29
ISSN (online): 1095-7189

History

Submitted: 21 December 2016
Accepted: 14 September 2017
Published online: 5 January 2018

Keywords

  1. multigrid
  2. semidefinite programming
  3. sparse polynomial optimization
  4. differential equations

MSC codes

  1. 35G30
  2. 65H10
  3. 65N06
  4. 65N22
  5. 65N55
  6. 90C22
  7. 90C26
  8. 90C51
  9. 90C59

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.