Abstract

Over the past 30 years numerous algorithms have been designed for symmetry breaking problems in the LOCAL model, such as maximal matching, MIS, vertex coloring, and edge coloring. For most problems the best randomized algorithm is at least exponentially faster than the best deterministic algorithm. In this paper we prove that these exponential gaps are necessary and establish numerous connections between the deterministic and randomized complexities in the LOCAL model. Each of our results has a very compelling take-away message: Fast $\Delta$-coloring of trees requires random bits. Building on a recent randomized lower bound of Brandt et al. [A lower bound for the distributed Lovász local lemma, in Proceedings of the 48th ACM Symposium on Theory of Computing (STOC), ACM, New York, 2016, pp. 479--488], we prove that the randomized complexity of $\Delta$-coloring a tree with maximum degree $\Delta$ is $O(\log_\Delta \log n + \log^\ast n)$ for any $\Delta \ge 55$, whereas its deterministic complexity is $\Omega(\log_\Delta n)$ for any $\Delta\ge 3$. This also establishes a large separation between the deterministic complexity of $\Delta$-coloring and $(\Delta+1)$-coloring trees. There is a gap in the deterministic complexity hierarchy. We show that any deterministic algorithm for a natural class of problems that runs in $O(1) + o(\log_\Delta n)$ rounds can be transformed to run in $O(\log^* n - \log^*\Delta + 1)$ rounds. If the transformed algorithm violates a lower bound (even allowing randomization), then one can conclude that the problem requires $\Omega(\log_\Delta n)$ time deterministically. This gives an alternate proof that deterministically $\Delta$-coloring a tree with small $\Delta$ takes $\Omega(\log_\Delta n)$ rounds. Graph shattering is necessary. We prove that the randomized complexity of any natural problem on instances of size $n$ is at least its deterministic complexity on instances of size $\sqrt{\log n}$. This shows that any randomized $O(1) + o(\log_\Delta \log n)$-round algorithm can be derandomized to run in deterministically $O(1) + o(\log_\Delta n)$ rounds and hence can be transformed to run in $O(\log^* n - \log^*\Delta + 1)$ rounds. This also shows that a deterministic $\Omega(\log_\Delta n)$ lower bound for any problem ($\Delta$-coloring a tree, for example) implies a randomized $\Omega(\log_\Delta \log n)$ lower bound. It illustrates that the graph shattering technique employed in recent randomized symmetry breaking algorithms is absolutely essential to the LOCAL model. For example, it is provably impossible to improve the $2^{O(\sqrt{\log\log n})}$ terms in the complexities of the best MIS and $(\Delta+1)$-coloring algorithms without also improving the $2^{O(\sqrt{\log n})}$-round Panconesi--Srinivasan algorithms.

Keywords

  1. coloring
  2. distributed algorithm
  3. local model
  4. symmetry breaking

MSC codes

  1. 05C85
  2. 68W15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman, A distributed $(2+\epsilon)$-approximation for vertex cover in ${O}(\log{\Delta}/\epsilon \log\log{\Delta})$ rounds, J. ACM, 64 (2017), 23.
2.
L. Barenboim and M. Elkin, Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition, Distributed Comput., 22 (2010), pp. 363--379.
3.
L. Barenboim, M. Elkin, and U. Goldenberg, Locally-iterative distributed $(\Delta + 1)$-coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models, in Proceedings of the 38th ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2018, pp. 437--446, https://doi.org/10.1145/3212734.3212769.
4.
L. Barenboim, M. Elkin, and F. Kuhn, Distributed $(\Delta+1)$-coloring in linear (in $\Delta$) time, SIAM J. Comput., 43 (2014), pp. 72--95, https://doi.org/10.1137/12088848X.
5.
L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry breaking, J. ACM, 63 (2016), 20.
6.
M. Ben-Or, Another advantage of free choice: Completely asynchronous agreement protocols, in Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), ACM, New York, 1983, pp. 27--30, https://doi.org/10.1145/800221.806707.
7.
T. Bisht, K. Kothapalli, and S. V. Pemmaraju, Brief announcement: Super-fast $t$-ruling sets, in Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2014, pp. 379--381.
8.
B. Bollobás, Chromatic number, girth and maximal degree, Discrete Math., 24 (1978), pp. 311--314, https://doi.org/10.1016/0012-365X(78)90102-4.
9.
B. Bollobás, Extremal Graph Theory, London Math. Soc. Monogr. 11, Academic Press, London, 1978.
10.
G. Bracha, An asynchronous (n-1)/3-resilient consensus protocol, in Proceedings of the 3rd ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 1984, pp. 154--162, https://doi.org/10.1145/800222.806743.
11.
S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto, A lower bound for the distributed Lovász local lemma, in Proceedings of the 48th ACM Symposium on Theory of Computing (STOC), ACM, New York, 2016, pp. 479--488.
12.
Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, The complexity of distributed edge coloring with small palettes, in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), ACM, New York, SIAM, Philadelphia, 2018, pp. 2633--2652, https://doi.org/10.1137/1.9781611975031.168.
13.
Y.-J. Chang, W. Li, and S. Pettie, An optimal distributed $(\Delta+1)$-coloring algorithm?, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), ACM, New York, 2018, pp. 445--456, https://doi.org/10.1145/3188745.3188964.
14.
K.-M. Chung, S. Pettie, and H.-H. Su, Distributed algorithms for the Lovász local lemma and graph coloring, in Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2014, pp. 134--143.
15.
X. Dahan, Regular graphs of large girth and arbitrary degree, Combinatorica, 34 (2014), pp. 407--426, https://doi.org/10.1007/s00493-014-2897-6.
16.
M. Elkin, S. Pettie, and H. H. Su, $(2\Delta-1)$-edge coloring is much easier than maximal matching in the distributed setting, in Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia, 2015, pp. 355--370.
17.
L. Feuilloley and P. Fraigniaud, Randomized local network computing, in Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM, New York, 2015, pp. 340--349.
18.
M. Fischer, Improved deterministic distributed matching via rounding, in Proceedings of the 31st International Symposium on Distributed Computing (DISC 2017), A. W. Richa, ed., Leibniz Internat. Proc. Informatics (LIPIcs) 91, Schloss Dagstuhl--Leibniz--Zentrum fuer Informatik, Dagstuhl, Germany, 2017, 17, https://doi.org/10.4230/LIPIcs.DISC.2017.17.
19.
M. Fischer and M. Ghaffari, Sublogarithmic distributed algorithms for Lovász local lemma with implications on complexity hierarchies, in Proceedings of the 31st International Symposium on Distributed Computing (DISC), Vienna, Austria, 2017, 18.
20.
M. J. Fischer, N. A. Lynch, and M. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM, 32 (1985), pp. 374--382, https://doi.org/10.1145/3149.214121.
21.
P. Fraigniaud, M. Heinrich, and A. Kosowski, Local conflict coloring, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, Washington, DC, 2016, pp. 625--634.
22.
M. Ghaffari, An improved distributed algorithm for maximal independent set, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia, 2016, pp. 270--277, https://doi.org/10.1137/1.9781611974331.ch20.
23.
M. Ghaffari, D. G. Harris, and F. Kuhn, On derandomizing local distributed algorithms, in Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, Washington, DC, 2018, pp. 662--673.
24.
M. Ghaffari and H.-H. Su, Distributed degree splitting, edge coloring, and orientations, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia, 2017, pp. 2505--2523, https://doi.org/10.1137/1.9781611974782.166.
25.
D. G. Harris, J. Schneider, and H. Su, Distributed $(\Delta +1)$-coloring in sublogarithmic rounds, J. ACM, 65 (2018), 19, https://doi.org/10.1145/3178120.
26.
V. King and J. Saia, Byzantine agreement in polynomial expected time, in Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), ACM, New York, 2013, pp. 401--410, https://doi.org/10.1145/2488608.2488658.
27.
A. Korman, S. Kutten, and D. Peleg, Proof labeling schemes, Distributed Comput., 22 (2010), pp. 215--233, https://doi.org/10.1007/s00446-010-0095-3.
28.
A. Korman, J.-S. Sereni, and L. Viennot, Toward more localized local algorithms: Removing assumptions concerning global knowledge, Distributed Comput., 26 (2013), pp. 289--308.
29.
K. Kothapalli and S. V. Pemmaraju, Super-fast 3-ruling sets, in Proceedings of the IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), LIPIcs 18, Schloss Dagstuhl--Leibniz--Zentrum für Informatik, Dagstuhl, Germany, 2012, pp. 136--147.
30.
F. Kuhn, T. Moscibroda, and R. Wattenhofer, Local computation: Lower and upper bounds, J. ACM, 63 (2016), 17.
31.
N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193--201, https://doi.org/10.1137/0221015.
32.
M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Discrete Math., 4 (1991), pp. 409--412, https://doi.org/10.1137/0404036.
33.
M. Naor and L. Stockmeyer, What can be computed locally?, SIAM J. Comput., 24 (1995), pp. 1259--1277, https://doi.org/10.1137/S0097539793254571.
34.
A. Panconesi and R. Rizzi, Some simple distributed algorithms for sparse networks, Distributed Comput., 14 (2001), pp. 97--100.
35.
A. Panconesi and A. Srinivasan, On the complexity of distributed network decomposition, J. Algorithms, 20 (1996), pp. 356--374.
36.
S. Pettie and H.-H. Su, Distributed algorithms for coloring triangle-free graphs, Inform. and Comput., 243 (2015), pp. 263--280.
37.
M. O. Rabin, Randomized Byzantine generals, in Proceedings of the 24th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, Washington, DC, 1983, pp. 403--409, https://doi.org/10.1109/SFCS.1983.48.
38.
J. Schneider and R. Wattenhofer, An optimal maximal independent set algorithm for bounded-independence graphs, Distributed Comput., 22 (2010), pp. 349--361.
39.
M. Sipser, Introduction to the Theory of Computation, 3rd ed., International Thomson Publishing, London, 2012.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 122 - 143
ISSN (online): 1095-7111

History

Submitted: 21 February 2017
Accepted: 15 November 2018
Published online: 30 January 2019

Keywords

  1. coloring
  2. distributed algorithm
  3. local model
  4. symmetry breaking

MSC codes

  1. 05C85
  2. 68W15

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : CCF-1217338, CNS-1318294, CCF-1514383

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media