Methods and Algorithms for Scientific Computing

A Hybrid High-Order Method for Darcy Flows in Fractured Porous Media

Abstract

We develop a novel Hybrid High-Order method for the simulation of Darcy flows in fractured porous media. The discretization hinges on a mixed formulation in the bulk region and a primal formulation inside the fracture. Salient features of the method include a seamless treatment of nonconforming discretizations of the fracture, as well as the support of arbitrary approximation orders on fairly general meshes. For the version of the method corresponding to a polynomial degree $k\ge 0$, we prove convergence in $h^{k+1}$ of the discretization error measured in an energy-like norm. In the error estimate, we explicitly track the dependence of the constants on the problem data, showing that the method is fully robust with respect to the heterogeneity of the permeability coefficients, and it exhibits only a mild dependence on the square root of the local anisotropy of the bulk permeability. The numerical validation on a comprehensive set of test cases confirms the theoretical results.

Keywords

  1. Hybrid High-Order methods
  2. finite volume methods
  3. finite element methods
  4. fractured porous media flow
  5. Darcy flow

MSC codes

  1. 65N08
  2. 65N30
  3. 76S05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Aghili, S. Boyaval, and D. A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations, Comput. Methods Appl. Math., 15 (2015), pp. 111--134, https://doi.org/10.1515/cmam-2015-0004.
2.
P. Angot, F. Boyer, and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media, ESAIM Math. Model Numer. Anal., 43 (2009), pp. 239--275.
3.
P. Angot, T. Gallouët, and R. Herbin, Convergence of finite volume methods on general meshes for non smooth solution of elliptic problems with cracks, in Proceedings of the 2nd International Symposium on Finite Volumes for Complex Applications, 1999, pp. 215--222.
4.
P. F. Antonietti, C. Facciola, A. Russo, and M. Verani, Discontinuous Galerkin Approximation of Flows in Fractured Porous Media, MOX report 22/2016, 2016.
5.
P. F. Antonietti, C. Facciola, A. Russo, and M. Verani, Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids, MOX report 55/2016, 2016.
6.
P. F. Antonietti, L. Formaggia, A. Scotti, M. Verani, and N. Verzotti, Mimetic finite difference approximation of flows in fractured porous media, ESAIM Math. Model Numer. Anal., 50 (2016), pp. 809--832.
7.
P. Bastian, Z. Chen, R. E. Ewing, R. Helmig, H. Jakobs, and V. Reichenberger, Numerical simulation of multiphase flow in fractured porous media, in Numerical Treatment of Multiphase Flows in Porous Media, Z. Chen, R. E. Ewing, and Z. C. Shi, eds., Lecture Notes in Phys. 552, Springer, Berlin, 2000, pp. 50--68.
8.
M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306 (2016), pp. 148--166.
9.
M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò, The Virtual Element Method for discrete fracture network simulations, Comput. Methods Appl. Mech. Engrg., 280 (2014), pp. 135--156.
10.
M. F. Benedetto, S. Berrone, and S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the virtual element method, Finite Elem. Anal. Des., 109 (2016), pp. 23--36.
11.
S. Berrone, S. Pieraccini, and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method, SIAM J. Sci. Comput., 35 (2013), pp. 908--935.
12.
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Berlin, 2013.
13.
D. Boffi and D. A. Di Pietro, Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes, ESAIM Math. Model Numer. Anal., 52 (2018), pp. 1--28, http://doi.org/10.1051/m2an/2017036.
14.
W. M. Boon and J. M. Nordbotten, Robust Discretization of Flow in Fractured Porous Media, preprint, arXiv:1601.06977 [math.NA], 2016.
15.
K. Brenner, M. Groza, C. Guichard, G. Lebeau, and R. Masson, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media, Numer. Math., 134 (2016), pp. 569--609.
16.
K. Brenner, M. Groza, L. Jeannin, R. Masson, and J. Pellerin, Immiscible Two-Phase Darcy Flow Model Accounting for Vanishing and Discontinuous Capillary Pressures: Application to the Flow in Fractured Porous Media, preprint, hal-01338512, 2016.
17.
K. Brenner, J. Hennicker, R. Masson, and P. Samier, Gradient discretization of hybrid dimensional Darcy flows in fractured porous media with discontinuous pressure at matrix fracture interfaces, IMA J. Numer. Anal., 37 (2017), pp. 1551--1585.
18.
K. H. Coats, W. D. George, C. Chu, and B. E. Marcum, Three-dimensional simulation of steamflooding, Soc. Petroleum Engineers J., 14 (1974), pp. 573--592.
19.
D. A. Di Pietro and J. Droniou, A hybrid high-order method for Leray--Lions elliptic equations on general meshes, Math. Comp., 86 (2017), pp. 2159--2191.
20.
D. A. Di Pietro and J. Droniou, $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray--Lions problems, Math. Models Methods Appl. Sci., 27 (2017), pp. 879--908.
21.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Berlin, 2012.
22.
D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1--21.
23.
D. A. Di Pietro and A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes, IMA J. Numer. Anal., 37 (2017), pp. 40--63, https://doi.org/10.1093/imanum/drw003.
24.
D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Methods Appl. Math., 14 (2014), pp. 461--472, https://doi.org/10.1515/cmam-2014-0018.
25.
D. A. Di Pietro, A. Ern, and S. Lemaire, A review of hybrid high-order methods: Formulations, computational aspects, comparison with other methods, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, G. Barrenechea, F. Brezzi, A. Cangiani, and M. Georgoulis, eds., Lect. Notes Comput. Sci. Eng. 114, Springer, Berlin, 2016, pp. 206--236.
26.
J. Droniou, J. Hennicker, and R. Masson, Numerical Analysis of a Two-Phase Flow Discrete Fracture Model. preprint, hal-01422477, 2016.
27.
A. Ern and J.-L. Guermond, Theory and practice of finite elements, Appl. Math. Sci. 159, Springer, Berlin, 2004.
28.
I. Faille, E. Flauraud, F. Nataf, S. Pégaz-Fiornet, F. Schneider, and F. Willien, A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods, in Proceedings of the 3rd International Symposium on Finite Volumes for Complex Applications, 2002, pp. 543--550.
29.
G. N. Gatica, A Simple Introduction to the Mixed Finite Element Methods Theory and Applications, SpringerBriefs Math., Springer, Berlin, 2014, https://doi.org/10.1007/978-3-319-03695-3.
30.
V. Martin, J. Jaffré, and J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1667--1691.
31.
A. Scotti, L. Formaggia, and F. Sottocasa, Analysis of a mimetic finite difference approximation of flows in fractured porous media, ESAIM Math. Model. Numer. Anal., to appear, https://doi.org/10.1051/m2an/2017028.
32.
M. R. Todd, P. M. O'Dell, and G. J. Hirasaki, Methods for increased accuracy in numerical reservoir simulators, Soc. Petroleum Engineers J., 12 (1972), pp. 515--530.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1063 - A1094
ISSN (online): 1095-7197

History

Submitted: 6 March 2017
Accepted: 29 November 2017
Published online: 12 April 2018

Keywords

  1. Hybrid High-Order methods
  2. finite volume methods
  3. finite element methods
  4. fractured porous media flow
  5. Darcy flow

MSC codes

  1. 65N08
  2. 65N30
  3. 76S05

Authors

Affiliations

Funding Information

Université Franco Italienne

Funding Information

Istituto Nazionale di Alta Matematica : Progetti 2017

Funding Information

Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-15-CE40-0005-01

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media