We introduce a model of multiagent dynamics for self-organized motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbors. The body attitudes are represented through unitary quaternions. We prove the correspondence with the model presented in [P. Degond, A. Frouvelle, and S. Merino-Aceituno, Math. Models Methods Appl. Sci., 27 (2017), pp. 1005--1049], where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual-based model introduced here is based on nematic (rather than polar) alignment. From the individual-based model, the kinetic and macroscopic equations are derived. The benefit of this approach, in contrast to that of the previous one, is twofold: first, it allows for a better understanding of the macroscopic equations obtained and, second, these equations are prone to numerical studies, which is key for applications.

  • 1.  M. Aldana and  C. Huepe , Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach , J. Statist. Phys. , 112 ( 2003 ), pp. 135 -- 153 . CrossrefISIGoogle Scholar

  • 2.  D. Armbruster P. Degond and  C. Ringhofer , A model for the dynamics of large queuing networks and supply chains , SIAM J. Appl. Math. , 66 ( 2006 ), pp. 896 -- 920 , https://doi.org/10.1137/040604625. LinkISIGoogle Scholar

  • 3.  A. Aw A. Klar T. Materne and  M. Rascle , Derivation of continuum traffic flow models from microscopic follow-the-leader models , SIAM J. Appl. Math. , 63 ( 2002 ), pp. 259 -- 278 , https://doi.org/10.1137/S0036139900380955. LinkISIGoogle Scholar

  • 4.  E. Ben-Jacob I. Cohen and  H. Levine , Cooperative self-organization of microorganisms , Adv. Phys. , 49 ( 2000 ), pp. 395 -- 554 . CrossrefISIGoogle Scholar

  • 5.  F. Bolley J. A. Can͂izo and  J. A. Carrillo , Mean-field limit for the stochastic Vicsek model , Appl. Math. Lett. , 25 ( 2012 ), pp. 339 -- 343 . CrossrefISIGoogle Scholar

  • 6.  J. Buhl D. Sumpter I. D. Couzin J. J. Hale E. Despland E. R. Miller and  S. J. Simpson , From disorder to order in marching locusts , Science , 312 ( 2006 ), pp. 1402 -- 1406 . CrossrefISIGoogle Scholar

  • 7.  A. Cavagna A. Cimarelli I. Giardina G. Parisi R. Santagati F. Stefanini and  M. Viale , Scale-free correlations in starling flocks , Proc. Natl. Acad. Sci. USA , 107 ( 2010 ), pp. 11865 -- 11870 . CrossrefISIGoogle Scholar

  • 8.  A. Cavagna L. Del Castello I. Giardina T. Grigera A. Jelic S. Melillo T. Mora L. Parisi E. Silvestri and  M. Viale et al. ., Flocking and turning: A new model for self-organized collective motion , J. Statist. Phys. , 158 ( 2014 ), pp. 601 -- 627 . CrossrefISIGoogle Scholar

  • 9.  C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Appl. Math. Sci. 106, Springer Science & Business Media, 2013.Google Scholar

  • 10.  P. Constantin Onsager equation for corpora , J. Comput. Theoret. Nanosci. , 7 ( 2010 ), pp. 675 -- 682 . CrossrefGoogle Scholar

  • 11.  P. Constantin and  A. Zlatoš , On the high intensity limit of interacting corpora , Commun. Math. Sci. , 8 ( 2010 ), pp. 173 -- 186 . CrossrefISIGoogle Scholar

  • 12.  I. D. Couzin J. Krause R. James G. D. Ruxton and  N. R. Franks , Collective memory and spatial sorting in animal groups , J. Theoret. Biol. , 218 ( 2002 ), pp. 1 -- 11 . CrossrefISIGoogle Scholar

  • 13.  J. W. Daniel W. B. Gragg L. Kaufman and  G. W. Stewart , Reorthogonalization and stable algorithms for updating the Gram-Schmidt factorization , Math. Comp. , 30 ( 1976 ), pp. 772 -- 795 . ISIGoogle Scholar

  • 14.  P. Degond , Macroscopic limits of the Boltzmann equation: A review, in Modeling and Computational Methods for Kinetic Equations , Springer , 2004 , pp. 3 -- 57 . Google Scholar

  • 15.  P. Degond G. Dimarco and  T. B. . Mac, Hydrodynamics of the Kuramoto--Vicsek model of rotating self-propelled particles , Math. Models Methods Appl. Sci. , 24 ( 2014 ), pp. 277 -- 325 . CrossrefISIGoogle Scholar

  • 16.  P. Degond G. Dimarco T. B. N. Mac and  N. Wang , Macroscopic models of collective motion with repulsion , Commun. Math. Sci. , 13 ( 2015 ), pp. 1615 -- 1638 . CrossrefISIGoogle Scholar

  • 17.  P. Degond and  A. Frouvelle . Merino-Aceituno, A new flocking model through body attitude coordination , Math. Models Methods Appl. Sci. , 27 ( 2017 ), pp. 1005 -- 1049 . CrossrefISIGoogle Scholar

  • 18.  P. Degond and  J. Liu , Hydrodynamics of self-alignment interactions with precession and derivation of the Landau--Lifschitz--Gilbert equation , Math. Models Methods Appl. Sci. , 22 ( 2012 ), 1140001 . CrossrefISIGoogle Scholar

  • 19.  P. Degond J. Liu and  C. Ringhofer , Evolution of wealth in a non-conservative economy driven by local Nash equilibria , Phil. Trans. R. Soc. A , 372 ( 2014 ), 20130394 . CrossrefISIGoogle Scholar

  • 20.  P. Degond A. Manhart and  H. Yu , A continuum model for nematic alignment of self-propelled particles , Discrete Contin. Dyn. Syst. Ser. B , 22 ( 2017 ), pp. 1295 -- 1327 . CrossrefISIGoogle Scholar

  • 21.  P. Degond and  S. Motsch , Continuum limit of self-driven particles with orientation interaction , Math. Models Methods Appl. Sci. , 18 ( 2008 ), pp. 1193 -- 1215 . CrossrefISIGoogle Scholar

  • 22.  P. Degond and  L. Navoret , A multi-layer model for self-propelled disks interacting through alignment and volume exclusion , Math. Models Methods Appl. Sci. , 25 ( 2015 ), pp. 2439 -- 2475 . CrossrefISIGoogle Scholar

  • 23.  P. Degond and  C. Ringhofer , Stochastic dynamics of long supply chains with random breakdowns , SIAM J. Appl. Math. , 68 ( 2007 ), pp. 59 -- 79 , https://doi.org/10.1137/060674302. LinkISIGoogle Scholar

  • 24.  P. Degond and  H. Yu , Self-organized hydrodynamics in an annular domain: Modal analysis and nonlinear effects , Math. Models Methods Appl. Sci. , 25 ( 2015 ), pp. 495 -- 519 . CrossrefISIGoogle Scholar

  • 25.  M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Internat. Ser. Monogr. Phys. 73, Oxford University Press, 1988.Google Scholar

  • 26.  D. Eberly, Rotation Representations and Performance Issues, Magic Software, Inc., Chapel Hill, NC, 2002.Google Scholar

  • 27.  A. Frouvelle , A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters , Math. Models Methods Appl. Sci. , 22 ( 2012 ), 1250011 . CrossrefISIGoogle Scholar

  • 28.  C. W. Gardiner, Stochastic methods, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.Google Scholar

  • 29.  G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, 2013.Google Scholar

  • 30.  G. Grégoire and  H. Chaté , Onset of collective and cohesive motion , Phys. Rev. Lett. , 92 ( 2004 ), 025702 . CrossrefISIGoogle Scholar

  • 31.  D. Helbing , Traffic and related self-driven many-particle systems , Rev. Modern Phys. , 73 ( 2001 ), pp. 1067 -- 1141 . CrossrefGoogle Scholar

  • 32.  D. Helbing A. Johansson and  H. . Al-Abideen, Dynamics of crowd disasters: An empirical study , Phys. Rev. E , 75 ( 2007 ), 046109 . CrossrefISIGoogle Scholar

  • 33.  N. J. Higham and  V. Noferini , An algorithm to compute the polar decomposition of a $3\times3$ matrix , Numer. Algorithms , 73 ( 2016 ), pp. 349 -- 369 . CrossrefISIGoogle Scholar

  • 34.  D. D. Holm, Geometric Mechanics: Rotating, Translating and Rolling, Vol. 2, Imperial College Press, 2008.Google Scholar

  • 35.  E. P. Hsu, Stochastic Analysis on Manifolds, Grad. Stud. Math. 38, AMS, 2002.Google Scholar

  • 36.  V. Klema and  A. Laub , The singular value decomposition: Its computation and some applications , IEEE Trans. Automat. Control , 25 ( 1980 ), pp. 164 -- 176 . CrossrefISIGoogle Scholar

  • 37.  J. K. Parrish and W. M. Hamner, Animal Groups in Three Dimensions: How Species Aggregate, Cambridge University Press, 1997.Google Scholar

  • 38.  L. Rodman, Topics in Quaternion Linear Algebra, Princeton University Press, 2014.Google Scholar

  • 39.  E. Salamin, Application of Quaternions to Computation with Rotations, tech. report, Working Paper, 1979.Google Scholar

  • 40.  A. Sarlette R. Sepulchre and  N. E. Leonard , Autonomous rigid body attitude synchronization , Automatica , 45 ( 2009 ), pp. 572 -- 577 . CrossrefISIGoogle Scholar

  • 41.  Y. Sone, Kinetic Theory and Fluid Dynamics, Springer Science & Business Media, 2012.Google Scholar

  • 42.  Y. Tu J. Toner and  M. Ulm , Sound waves and the absence of Galilean invariance in flocks , Phys. Rev. Lett. , 80 ( 1998 ), pp. 4819 -- 4822 . CrossrefISIGoogle Scholar

  • 43.  T. Vicsek A. Czirók E. Ben-Jacob I. Cohen and  O. Shochet , Novel type of phase transition in a system of self-driven particles , Phys. Rev. Lett. , 75 ( 1995 ), pp. 1226 -- 1229 . CrossrefISIGoogle Scholar

  • 44.  T. Vicsek and  A. Zafeiris , Collective motion , Phys. Rep. , 517 ( 2012 ), pp. 71 -- 140 . CrossrefISIGoogle Scholar

  • 45.  H. Zhang A. Be’er E.-L. Florin and  H. L. Swinney , Collective motion and density fluctuations in bacterial colonies , Proc. Natl. Acad. Sci. USA , 107 ( 2010 ), pp. 13626 -- 13630 . CrossrefISIGoogle Scholar