Abstract

We consider the problem of recovering a function input of a differential equation formulated on an unknown domain $\mathcal{M}$. We assume to have access to a discrete domain $\mathcal{M}_n=\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathcal{M}$ and to noisy measurements of the output solution at $p\le n$ of those points. We introduce a graph-based Bayesian inverse problem and show that the graph-posterior measures over functions in $\mathcal{M}_n$ converge, in the large $n$ limit, to a posterior over functions in $\mathcal{M}$ that solves a Bayesian inverse problem with known domain. The proofs rely on the variational formulation of the Bayesian update and on a new topology for the study of convergence of measures over functions on point clouds to a measure over functions on the continuum. Our framework, techniques, and results may serve to lay the foundations of robust uncertainty quantification of graph-based tasks in machine learning. The ideas are presented in the concrete setting of recovering the initial condition of the heat equation on an unknown manifold.

Keywords

  1. graph Laplacian
  2. posterior
  3. continuum limits
  4. $\Gamma$-convergence

MSC codes

  1. 28A33
  2. 46N30
  3. 62F15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart, Importance sampling: Intrinsic dimension and computational cost, Statist. Sci., 32 (2017), pp. 405--431.
2.
A. L. Bertozzi, X. Luo, A. M. Stuart, and K. C. Zygalakis, Uncertainty Quantification in the Classification of High Dimensional Data, arXiv:1703.08816, 2017.
3.
L. Biegler, G. Biros, O. Ghattas, M. Heinkenschloss, D. Keyes, B. Mallick, L. Tenorio, B. van Bloemen Waanders, K. Willcox, and Y. Marzouk, Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley Ser. Comput. Stat. 712, John Wiley & Sons, New York, 2011.
4.
D. Burago, S. Ivanov, and Y. Kurylev, A graph discretization of the Laplace-Beltrami operator, J. Spectr. Theory, 4 (2014), 675714.
5.
S. L. Cotter, M. Dashti, J. C. Robinson, and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics, Inverse Problems, 25 (2009), 115008.
6.
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Pregr. Nonlinear Differential Equations Appl. 8, Springer, New York, 2012.
7.
M. Dashti and A. M. Stuart, Uncertainty quantification and weak approximation of an elliptic inverse problem, SIAM J. Numer. Anal., 49 (2011), pp. 2524--2542.
8.
P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Ser. Probab. Stat. 902, John Wiley & Sons, New York 2011.
9.
E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk, Fatou's lemma for weakly converging probabilities, Theory Probab. Appl., 58 (2014), pp. 683--689.
10.
N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev, Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Towards the Laplace--Beltrami Operator, preprint, 2018.
11.
N. García Trillos and D. Sanz-Alonso, Gradient Flows: Applications to Classification, Image Denoising, and Riemannian MCMC, preprint, https://arxiv.org/abs/1705.07382, 2017.
12.
N. García Trillos and D. Sanz-Alonso, The Bayesian formulation and well-posedness of fractional elliptic inverse problems, Inverse Problems, 33 (2017), 065006.
13.
N. García Trillos and D. Slepčev, On the rate of convergence of empirical measures in $\infty$-transportation distance, Canad. J. Math., 67 (2014), pp. 1358--1383.
14.
N. García Trillos and D. Slepčev, Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., 220 (2016), pp. 193--241.
15.
N. García Trillos and D. Slepčev, A variational approach to the consistency of spectral clustering, Appl. Comput. Harmon. Anal. (2016), https://doi.org/10.1016/j.acha.2016.09.003.
16.
N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), pp. 101--120.
17.
P. A. Meyer, Probability and Potentials, Blaisdell, Waltham, MA, 1966.
18.
S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst, 31 (2011), pp. 1427--1451.
19.
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451--559.
20.
U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), pp. 395--416.
21.
A. Zellner, Optimal information processing and Bayes's theorem, Amer. Stat., 42 (1988), pp. 278--280.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4020 - 4040
ISSN (online): 1095-7154

History

Submitted: 10 July 2017
Accepted: 27 April 2018
Published online: 19 July 2018

Keywords

  1. graph Laplacian
  2. posterior
  3. continuum limits
  4. $\Gamma$-convergence

MSC codes

  1. 28A33
  2. 46N30
  3. 62F15

Authors

Affiliations

Nicolás García Trillos

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media