Abstract

We introduce the geodesic walk for sampling Riemannian manifolds and apply it to the problem of generating uniform random points from the interior of polytopes in $\mathbb{R}^{n}$ specified by $m$ inequalities. The walk is a discrete-time simulation of a stochastic differential equation on the Riemannian manifold equipped with the metric induced by the Hessian of a convex function; each step is the solution of an ordinary differential equation (ODE). The resulting sampling algorithm for polytopes mixes in $O^{*}(mn^{\frac{3}{4}})$ steps. This is the first walk that breaks the quadratic barrier for mixing in high dimension, improving on the previous best bound of $O^{*}(mn)$ by Kannan and Narayanan for the Dikin walk. We also show that each step of the geodesic walk (solving an ODE) can be implemented efficiently, thus improving the time complexity for sampling polytopes. Our analysis of the geodesic walk for general Hessian manifolds does not assume positive curvature and might be of independent interest.

Keywords

  1. geodesic walk
  2. sampling polytopes
  3. log barrier
  4. Hessian manifold
  5. SDE
  6. ODE

MSC codes

  1. 68W20
  2. 65C05
  3. 58D17

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Bubeck and R. Eldan, The entropic barrier: Exponential families, log-concave geometry, and self-concordance, Math. Oper. Res., 44 (2019), pp. 264--276, https://doi.org/10.1287/moor.2017.0923.
2.
S. Bubeck, R. Eldan, and J. Lehec, Sampling from a log-concave distribution with projected Langevin Monte Carlo, Discrete. Comput. Geom., 59 (2018), pp. 757--783, https://doi.org/10.1007/s00454-018-9992-1.
3.
B. Cousins and S. Vempala, A cubic algorithm for computing Gaussian volume, in Proceedings of SODA, 2014, pp. 1215--1228.
4.
A. S. Dalalyan, Theoretical Guarantees for Approximate Sampling from Smooth and Log-Concave Densities, preprint, http://arxiv.org/abs/1412.7392, 2014.
5.
A. B. Dieker, Reflected Brownian Motion, Wiley, New York, 2010, https://doi.org/10.1002/9780470400531.eorms0711.
6.
A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation, SIAM J. Numer. Anal., 33 (1996), pp. 1689--1711.
7.
M. E. Dyer and A. M. Frieze, Computing the volume of a convex body: A case where randomness provably helps, in Proceedings of the AMS Symposium on Probabilistic Combinatorics and Its Applications, 1991, pp. 123--170.
8.
M. E. Dyer, A. M. Frieze, and R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, in Proceedings of STOC, 1989, pp. 375--381.
9.
M. E. Dyer, A. M. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, J. ACM, 38 (1991), pp. 1--17.
10.
J. M. Harrison, Brownian motion and Stochastic Flow Systems, Wiley Ser. Probab. and Math. Statist., Wiley, New York, 1985.
11.
R. Hildebrand, Canonical barriers on convex cones, Math. Oper. Res., 39 (2014), pp. 841--850.
12.
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts Appl. Math. 44, Cambridge University Press, Cambridge, UK, 2009.
13.
J. Jost, Riemannian Geometry and Geometric Analysis, Springer, New York, 2008.
14.
R. Kannan, L. Lovász, and M. Simonovits, Random walks and an $O^*(n^5)$ volume algorithm for convex bodies, Random Structures Algorithms, 11 (1997), pp. 1--50.
15.
R. Kannan and H. Narayanan, Random walks on polytopes and an affine interior point method for linear programming, in Proceedings of STOC, 2009, pp. 561--570.
16.
N. Karmarkar, Riemannian geometry underlying interior-point methods for linear programming, Contemp. Math., 114 (1990), pp. 51--75.
17.
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, ZAMM Z. Angew. Mathe., 74 (1994), pp. 332--332, https://doi.org/10.1002/zamm.19940740806 (book review).
18.
Y. T. Lee and A. Sidford, Path finding methods for linear programming: Solving linear programs in $\tilde{O}(rank)$ iterations and faster algorithms for maximum flow, in Proceedings of the 55th Annual Symposium on Foundations of Computer Science, IEEE, 2014, pp. 424--433.
19.
Y. T. Lee and A. Sidford, Efficient inverse maintenance and faster algorithms for linear programming, in Proceedings of the 56th Annual Symposium on Foundations of Computer Science, IEEE, 2015, pp. 230--249.
20.
Y. T. Lee, A. Sidford, and S. C.-w. Wong, A faster cutting plane method and its implications for combinatorial and convex optimization, in Proceedings of the 56th Annual Symposium on Foundations of Computer Science, IEEE, 2015, pp. 1049--1065.
21.
Y. T. Lee and S. S. Vempala, Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation, CoRR, abs/1710.06261, http://arxiv.org/abs/1710.06261, 2017.
22.
L. Lovász, How to compute the volume?, Jber. d. Dt. Math.-Verein, Jubiläumstagung, Teuner, Stuttgart, 1990, pp. 138--151.
23.
L. Lovász, Hit-and-run mixes fast, Math. Progam., 86 (1998), pp. 443--461.
24.
L. Lovász and M. Simonovits, Mixing rate of Markov chains, an isoperimetric inequality, and computing the volume, in Proceedings of FOCS, 1990, pp. 482--491.
25.
L. Lovász and M. Simonovits, On the randomized complexity of volume and diameter, in Proceedings of FOCS, IEEE, 1992, pp. 482--491.
26.
L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, in Random Structures Algorithms, vol. 4, 1993, pp. 359--412.
27.
L. Lovász and S. Vempala, Fast algorithms for logconcave functions: Sampling, rounding, integration and optimization, in Proceedings of FOCS, 2006, pp. 57--68.
28.
L. Lovász and S. Vempala, Hit-and-run from a corner, SIAM J. Comput., 35 (2006), pp. 985--1005.
29.
O. Mangoubi and A. Smith, Rapid Mixing of Geodesic Walks on Manifolds with Positive Curvature, arXiv preprint, http://arxiv.org/abs/1609.02901, 2016.
30.
H. Narayanan, Randomized interior point methods for sampling and optimization, Ann. Appl. Probab., 26 (2016), pp. 597--641, https://doi.org/10.1214/15-AAP1104.
31.
Y. Nesterov and A. Nemirovski, Primal central paths and riemannian distances for convex sets, Found. Comput. Math., 8 (2008), pp. 533--560, https://doi.org/10.1007/s10208-007-9019-4.
32.
Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-Point Polynomial Algorithms in Convex Programming, Stud. Appl. Numer. Math. 13, SIAM, Philadelphia, 1994.
33.
Y. E. Nesterov amd M. J. Todd, On the Riemannian geometry defined by self-concordant barriers and interior-point methods, Found. Comput. Math., 2 (2002), pp. 333--361.
34.
Y. Ollivier, A visual introduction to riemannian curvatures and some discrete generalizations, in Analysis and Geometry of Metric Measure Spaces: Lecture Notes of the 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011, 2013, pp. 197--219.
35.
R. Smith, Efficient Monte-Carlo procedures for generating points uniformly distributed over bounded regions, Oper. Res., 32 (1984), pp. 1296--1308.
36.
D. Straszak and N. K. Vishnoi, On a Natural Dynamics for Linear Programming, arXiv preprint, http://arxiv.org/abs/1511.07020, 2015.
37.
B. Totaro, The curvature of a Hessian metric, Internat. J. Math., 15 (2004), pp. 369--391.
38.
S. Vempala, Geometric random walks: A survey, MSRI Combin. Comput. Geom., 52 (2005), pp. 573--612.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: STOC17-400 - STOC17-488
ISSN (online): 1095-7111

History

Submitted: 5 September 2017
Accepted: 14 December 2021
Published online: 28 April 2022

Keywords

  1. geodesic walk
  2. sampling polytopes
  3. log barrier
  4. Hessian manifold
  5. SDE
  6. ODE

MSC codes

  1. 68W20
  2. 65C05
  3. 58D17

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media