Methods and Algorithms for Scientific Computing

Low-Order Preconditioning of High-Order Triangular Finite Elements

Abstract

We propose a new formulation of a low-order elliptic preconditioner for high-order triangular elements. In the preconditioner, the nodes of the low-order finite element problem do not necessarily coincide with the high-order nodes. Instead, the two spaces are connected using least squares projection operators. The effectiveness of the preconditioner is demonstrated to be highly sensitive to the location and number of vertices used to construct the low-order finite element mesh on each high-order element. We treat the number of low-order vertices and their locations as optimizable quantities and chose them to minimize the condition number of the preconditioned stiffness matrix on the reference element. We present computational results that demonstrate that the condition number of the preconditioned high-order stiffness matrix on the reference element can be improved. The best performing preconditioners are formed with low-order finite element meshes that have more vertices than the high-order element has degrees of freedom, and have nodes grouped close to the element edges.

Keywords

  1. high-order
  2. finite element
  3. elliptic
  4. preconditioning
  5. low-order

MSC codes

  1. 65F08
  2. 65N30
  3. 65N35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello, Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, Math. Comp., 80 (2011), pp. 1623--1638.
2.
C. Canuto, P. Gervasio, and A. Quarteroni, Finite-element preconditioning of G-NI spectral methods, SIAM J. Sci. Comput., 31 (2010), pp. 4422--4451.
3.
C. Canuto, M. Y. Hussaini, A. Quarteroni, A. Thomas, Jr., et al., Spectral methods in fluid dynamics, Springer, New York, 2012.
4.
P. Demaret and M. Deville, Chebyshev collocation solutions of the Navier--Stokes equations using multi-domain decomposition and finite element preconditioning, J. Comput. Phys., 95 (1991), pp. 359--386.
5.
M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Methods for Incompressible Fluid Flow, Vol. 9, Cambridge University Press, Cambridge, 2002.
6.
M. O. Deville and E. H. Mund, Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys., 60 (1985), pp. 517--533.
7.
M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. and Stat. Comput., 11 (1990), pp. 311--342.
8.
M. O. Deville and E. H. Mund, Fourier analysis of finite element preconditioned collocation schemes, SIAM J. Sci. and Stat. Comput., 13 (1992), pp. 596--610.
9.
P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incompressible Navier--Stokes equations, J. Comput. Phys., 133 (1997), pp. 84--101.
10.
P. F. Fischer, N. I. Miller, and H. M. Tufo, An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows, IMA Vol. Math. Appl., 120 (2000), pp. 159--180.
11.
P. F. Fischer and E. M. Rønquist, Spectral element methods for large scale parallel Navier--Stokes calculations, Comput. Methods Appl. Mech. Engrg., 116 (1994), pp. 69--76.
12.
P. Francken, M. Deville, and E. Mund, On the spectrum of the iteration operator associated to the finite element preconditioning of Chebyshev collocation calculations, Comput. Methods Appl. Mech. Engrg., 80 (1990), pp. 295--304.
13.
R. D. Henderson and G. E. Karniadakis, Unstructured spectral element methods for simulation of turbulent flows, J. Comput. Phys., 122 (1995), pp. 191--217.
14.
J. S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35 (1998), pp. 655--676.
15.
J. W. Lottes and P. F. Fischer, Hybrid multigrid/Schwarz algorithms for the spectral element method, J. Sci. Comput., 24 (2005), pp. 45--78.
16.
W. A. Mulder, New triangular mass-lumped finite elements of degree six for wave propagation, Prog. Electromagn. Res., 141 (2013), pp. 671--692.
17.
L. Olson, Algebraic multigrid preconditioning of high-order spectral elements for elliptic problems on a simplicial mesh, SIAM J. Sci. Comput., 29 (2007), pp. 2189--2209.
18.
S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys., 37 (1980), pp. 70--92.
19.
J. Proriol, Sur une famille de polynomes á deux variables orthogonaux dans un triangle, C. R. Hebdomadaires des Seances de L'Acedmie des Sciences, 245 (1957), pp. 2459--2461.
20.
A. Quarteroni and E. Zampieri, Finite element preconditioning for Legendre spectral collocation approximations to elliptic equations and systems, SIAM J. Numer. Anal., 29 (1992), pp. 917--936.
21.
M. A. Taylor, B. A. Wingate, and R. E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38 (2000), pp. 1707--1720.
22.
T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Engrg. Math., 56 (2006), pp. 247--262.
23.
T. Warburton, L. F. Pavarino, and J. S. Hesthaven, A pseudo-spectral scheme for the incompressible Navier--Stokes equations using unstructured nodal elements, J. Comput. Phys., 164 (2000), pp. 1--21.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A4040 - A4059
ISSN (online): 1095-7197

History

Submitted: 27 September 2017
Accepted: 31 August 2018
Published online: 4 December 2018

Keywords

  1. high-order
  2. finite element
  3. elliptic
  4. preconditioning
  5. low-order

MSC codes

  1. 65F08
  2. 65N30
  3. 65N35

Authors

Affiliations

Funding Information

U.S. Department of Energy https://doi.org/10.13039/100000015 : 17-SC-20-SC

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media