Abstract

In this work we propose reduced order methods as a suitable approach to face parametrized optimal control problems governed by partial differential equations, with applications in environmental marine sciences and engineering. Environmental parametrized optimal control problems are usually studied for different configurations described by several physical and/or geometrical parameters representing different phenomena and structures. The solution of parametrized problems requires a demanding computational effort. In order to save computational time, we rely on reduced basis techniques as a suitable and rapid tool to solve parametrized problems. We introduce general parametrized linear quadratic optimal control problems and the saddle-point structure of their optimality system. Then, we propose a POD--Galerkin reduction of the optimality system. We test the resulting method on two environmental applications: a pollutant control in the Gulf of Trieste, Italy, and a solution tracking governed by quasi-geostrophic equations describing the North Atlantic Ocean dynamics. The two experiments underline how reduced order methods are a reliable and convenient tool to manage several environmental optimal control problems, for different mathematical models, geographical scale, as well as physical meaning. The quasi-geostrophic optimal control problem is also presented in its nonlinear version.

Keywords

  1. reduced order methods
  2. proper orthogonal decomposition
  3. parametrized optimal control problems
  4. PDE state equations
  5. environmental marine applications
  6. quasi-geostrophic equation

MSC codes

  1. 49J20
  2. 76N25
  3. 35Q35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
E. Bader, M. Kärcher, M. A. Grepl, and K. Veroy, Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints, SIAM J. Sci. Comput., 38 (2016), pp. A3921--A3946.
2.
F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD--Galerkin approximation of parametrized steady incompressible Navier--Stokes equations, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1136--1161.
3.
F. Ballarin, A. Sartori, and G. Rozza, RBniCS---Reduced Order Modelling in FEniCS, https://mathlab.sissa.it/rbnics (2015).
4.
M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339 (2004), pp. 667--672.
5.
D. W. Behringer, M. Ji, and A. Leetmaa, An improved coupled model for ENSO prediction and implications for ocean initialization, part I: The ocean data assimilation system, Monthly Weather Review, 126 (1998), pp. 1013--1021.
6.
P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math. Sci., 166, Springer-Verlag, New York, 2009.
7.
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., 44, Springer-Verlag, New York, 2013.
8.
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automatique Informatique Recherche Opérationnelle Analyse Numérique, 8 (1974), pp. 129--151.
9.
J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier--Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), pp. 337--355.
10.
J. A. Carton, G. Chepurin, X. Cao, and B. Giese, A simple Ocean data assimilation analysis of the global upper ocean 1950--95, part I: Methodology, J. Physical Oceanography, 30 (2000), pp. 294--309.
11.
J. A. Carton and B. S. Giese, A reanalysis of ocean climate using simple ocean data assimilation (SODA), Monthly Weather Review, 136 (2008), pp. 2999--3017.
12.
F. Cavallini and F. Crisciani, Quasi-Geostrophic Theory of Oceans and Atmosphere: Topics in the Dynamics and Thermodynamics of the Fluid Earth, Atmos. Oceanogr. Sci. Libr. 45, Springer-Verlag, New York, 2013.
13.
D. Chapelle, A. Gariah, P. Moireau, and J. Sainte-Marie, A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: Analysis, assessments and applications to parameter estimation, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1821--1843, http://eudml.org/doc/273237.
14.
P. Chen, A. Quarteroni, and G. Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 133 (2015), pp. 67--102, https://doi.org/10.1007/s00211-015-0743-4.
15.
J. C. de los Reyes and F. Tröltzsch, Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints, SIAM J. Control Optim., 46 (2007), pp. 604--629.
16.
L. Dedè, Optimal flow control for Navier-Stokes equations: Drag minimization, Internat. J. Numer. Methods Fluids, 55 (2007), pp. 347--366.
17.
L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM J. Sci. Comput., 32 (2010), pp. 997--1019.
18.
L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints, J. Sci. Comput., 50 (2012), pp. 287--305, https://doi.org/10.1007/s10915-011-9483-5.
19.
L. Dedè, Adaptive and Reduced Basis Method for Optimal Control Problems in Environmental Applications, Ph.D. thesis, Politecnico di Milano, 2008, http://mox.polimi.it.
20.
M. C. Delfour and J. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Adv. Des. Control 22, SIAM, Philadelphia, 2011.
21.
E. Fernández Cara and E. Zuazua Iriondo, Control theory: History, mathematical achievements and perspectives, Bol. Soc. Espanola Mat. Apl., 26, 79--140, (2003).
22.
A. L. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems, SIAM J. Sci. Comput., 34 (2012), pp. A2812--A2836.
23.
M. Ghil and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography, Adv. Geophys., 33 (1991), pp. 141--266.
24.
M. D. Gunzburger, Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2003.
25.
J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, Adv. Des. Control 7, SIAM, Philadelphia, 2003.
26.
J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs Math., Springer, Milano, 2015.
27.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, 23, Springer-Verlag, New York, 2008.
28.
K. Ito and S. Ravindran, A reduced-order method for simulation and control of fluid flows, J. Comput. Phys., 143 (1998), pp. 403--425.
29.
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
30.
M. Kärcher and M. A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 416--441.
31.
T. Kim, T. Iliescu, and E. Fried, B-spline based finite-element method for the stationary quasi-geostrophic equations of the Ocean, Comput. Methods Appl. Mech. Engrg., 286 (2015), pp. 168--191.
32.
K. Kunisch and S. Volkwein, Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345--371.
33.
K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems, ESAIM Math. Model. Numer. Anal., 42 (2008), pp. 1--23.
34.
A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, New York, 2012.
35.
B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, New York, 2010.
36.
R. Mosetti, C. Fanara, M. Spoto, and E. Vinzi, Innovative strategies for marine protected areas monitoring: The experience of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale in the Natural Marine Reserve of Miramare, Trieste-Italy, in OCEANS, 2005, Proceedings of MTS/IEEE, IEEE, 2005, pp. 92--97.
37.
F. Negri, Reduced Basis Method for Parametrized Optimal Control Problems Governed by PDEs, MS thesis, Politecnico di Milano, 2011.
38.
F. Negri, A. Manzoni, and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Comput. Math. Appl., 69 (2015), pp. 319--336.
39.
F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35 (2013), pp. A2316--A2340.
40.
M. Pošta and T. Roubíček, Optimal control of Navier--Stokes equations by Oseen approximation, Comput. Math. Appl., 53 (2007), pp. 569--581.
41.
C. Prud'Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. Patera, and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Engrg., 124 (2002), pp. 70--80.
42.
A. Quarteroni, G. Rozza, L. Dedè, and A. Quaini, Numerical approximation of a control problem for advection-diffusion processes, in IFIP Conference on System Modeling and Optimization, F. Ceragioli, A. Dontchev, H. Futura, K. Marti, L. Pandolfi, eds., System Modeling and Optimization 199, Springer, Boston, 2005, pp. 261--273.
43.
A. Quarteroni, G. Rozza, and A. Quaini, Reduced basis methods for optimal control of advection-diffusion problems, in Advances in Numerical Mathematics, RAS, Moscow, 2007, pp. 193--216.
44.
G. Rozza, D. Huynh, and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: Roles of the inf-sup stability constants, Numer. Math., 125 (2013), pp. 115--152.
45.
G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Engrg., 15 (2008), pp. 229--275.
46.
G. Rozza, A. Manzoni, and F. Negri, Reduction strategies for PDE-constrained oprimization problems in haemodynamics, in ECCOMAS, Congress Proceedings, Vienna, Austria, 2012, pp. 1749--1768.
47.
O. San and T. Iliescu, A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation, Adv. Comput. Math., 41 (2015), pp. 1289--1319.
48.
J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimisation problems, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 752--773.
49.
V. Schulz and I. Gherman, One-shot methods for aerodynamic shape optimization, in MEGADESIGN and MegaOpt-German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, Springer-Verlag, New York, 2009, pp. 207--220.
50.
T. Shiganova and A. Malej, Native and non-native ctenophores in the Gulf of Trieste, Northern Adriatic Sea, J. Plankton Research, 31 (2009), pp. 61--71.
51.
S. Taasan, One Shot Methods for Optimal Control of Distributed Parameter Systems 1: Finite Dimensional Control, Tech. Report 91--2, Institute for Computer Applications in Science and Engineering, Hampton, VA, 1991.
52.
D. Torlo, F. Ballarin, and G. Rozza, Weighted stabilized reduced basis methods for parametrized advection dominated problems with random inputs, to appear.
53.
E. Tziperman and W. C. Thacker, An optimal-control/adjoint-equations approach to studying the oceanic general circulation, J. Phys. Oceanography, 19 (1989), pp. 1471--1485.
54.
H. Yang, G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, Intensification and poleward shift of subtropical western boundary currents in a warming climate, J. Geophys. Res. Oceans, 121 (2016), pp. 4928--4945.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1055 - B1079
ISSN (online): 1095-7197

History

Submitted: 4 October 2017
Accepted: 4 May 2018
Published online: 12 July 2018

Keywords

  1. reduced order methods
  2. proper orthogonal decomposition
  3. parametrized optimal control problems
  4. PDE state equations
  5. environmental marine applications
  6. quasi-geostrophic equation

MSC codes

  1. 49J20
  2. 76N25
  3. 35Q35

Authors

Affiliations

Funding Information

Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 681447

Funding Information

Istituto Nazionale di Alta Matematica "Francesco Severi" https://doi.org/10.13039/100009112

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.