Abstract

Schwarz waveform relaxation (SWR) methods have been developed to solve a wide range of diffusion-dominated and reaction-dominated equations. The appeal of these methods stems primarily from their ability to use nonconforming space-time discretizations; SWR methods are consequently well-adapted for coupling models with highly varying spatial and time scales. The efficacy of SWR methods is questionable, however, since in each iteration, one propagates an error across the entire time interval. In this manuscript, we introduce an adaptive pipeline approach wherein one subdivides the computational domain into space-time blocks, and adaptively selects the waveform iterates which should be updated given a fixed number of computational workers. Our method is complementary to existing space and time parallel methods, and can be used to obtain additional speedup when the saturation point is reached for other types of parallelism. We analyze these waveform relaxation with adaptive pipelining (WRAP) methods to show convergence and the theoretical speedup that can be expected. Numerical experiments on solutions to the linear heat equation, the advection-diffusion equation, and a reaction-diffusion equation illustrate features and efficacy of WRAP methods for various transmission conditions.

Keywords

  1. waveform relaxation
  2. domain decomposition
  3. adaptivity
  4. parallel computing

MSC codes

  1. 65Y05
  2. 65M20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
XBraid: Parallel Time Integration with Multigrid, http://llnl.gov/casc/xbraid.
2.
M. Al-Khaleel, M. J. Gander, and A. E. Ruehli, A mathematical analysis of optimized waveform relaxation for a small RC circuit, Appl. Numer. Math., 75 (2014), pp. 61--76, https://doi.org/10.1016/j.apnum.2012.12.005.
3.
A. Bellen and M. Zennaro, The use of Runge-Kutta formulae in waveform relaxation methods, Appl. Numer. Math., 11 (1993), pp. 95--114, https://doi.org/10.1016/0168-9274(93)90042-P.
4.
D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comp., 78 (2009), pp. 185--223.
5.
S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2008.
6.
K. Burrage, C. Dyke, and B. Pohl, On the performance of parallel waveform relaxations for differential systems, Appl. Numer. Math., 20 (1996), pp. 39--55.
7.
A. J. Christlieb, R. D. Haynes, and B. W. Ong, A parallel space-time algorithm, SIAM J. Sci. Comput., 34 (2012), pp. C233--C248, https://doi.org/10.1137/110843484.
8.
A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci. Comput., 32 (2010), pp. 818--835, https://doi.org/10.1137/09075740X.
9.
V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, Other Titles Appl. Math. 144, SIAM, Philadelphia, 2015.
10.
M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105--132, https://doi.org/10.2140/camcos.2012.7.105.
11.
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661.
12.
M. J. Gander and S. Güttel, PARAEXP: A parallel integrator for linear initial-value problems, SIAM J. Sci. Comput., 35 (2013), pp. C123--C142, https://doi.org/10.1137/110856137.
13.
M. J. Gander, Five Decades of Time Parallel Time Integration, and a Note on the Degradation of the Performance of the Parareal Algorithm as a Function of the Reynolds Number, Oberwolfach Report, 2017.
14.
M. J. Gander, F. Kwok, and B. C. Mandal, Dirichlet--Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems, Electron. Trans. Numer. Anal., 45 (2016), pp. 424--456.
15.
M. J. Gander and A. M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation, SIAM J. Sci. Comput., 19 (1998), pp. 2014--2031.
16.
M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation in $n$ dimensions, BIT, 42 (2002), pp. 779--795.
17.
C. Gear, Waveform methods for space and time parallelism, J. Comput. Appl. Math., 38 (1991), pp. 137--147.
18.
E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Numer. Math., 93 (2002), pp. 279--313.
19.
S. Günther, N. R. Gauger, and J. B. Schroder, A non-intrusive parallel-in-time adjoint solver with the XBraid library, Comput. Vis. Sci., 19 (2018), pp. 85--95.
20.
L. Halpern, C. Japhet, and J. Szeftel, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50 (2012), pp. 2588--2611.
21.
R. Jeltsch and B. Pohl, Waveform relaxation with overlapping splittings, SIAM J. Sci. Comput., 16 (1995), pp. 40--49, https://doi.org/10.1137/0916004.
22.
F. Kwok, Neumann-Neumann waveform relaxation for the time-dependent heat equation, in Domain Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng. 98, Springer, Cham, Switzerland, 2014, pp. 189--198.
23.
B. Leimkuhler, Estimating waveform relaxation convergence, SIAM J. Sci. Comput., 14 (1993), pp. 872--889, https://doi.org/10.1137/0914054.
24.
B. Leimkuhler and A. Ruehli, Rapid convergence of waveform relaxation, Appl. Numer. Math., 11 (1993), pp. 211--224, https://doi.org/10.1016/0168-9274(93)90049-W.
25.
E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation method for time-domain analysis of large scale integrated circuits, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 1 (1982), pp. 131--145.
26.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps (pararéel), C. R. Acad. Sci. Ser. I Math., 332 (2001), pp. 661--668, https://doi.org/10.1016/S0764-4442(00)01793-6.
27.
B. C. Mandal, A time-dependent Dirichlet-Neumann method for the heat equation, in Domain Decomposition in Science and Engineering XXI, J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. B. Widlund, eds., Lect. Notes Comput. Sci. Eng. 98, Springer, Cham, Switzerland, 2014, pp. 467--475.
28.
U. Miekkala and O. Nevanlinna, Convergence of dynamic iteration methods for initial value problems, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 459--482.
29.
O. Nevanlinna, Remarks on Picard-Lindelöf iteration, BIT, 29 (1989), pp. 535--562.
30.
B. W. Ong, S. High, and F. Kwok, Pipeline Schwarz waveform relaxation, in Domain Decomposition Methods in Science and Engineering XXII, T. Dickopf, M. J. Gander, L. Halpern, R. Krause, and L. Pavarino, eds., Lect. Notes Comput. Sci. Eng. 104, Springer, Cham, Switzerland, 2016, pp. 179--187, https://doi.org/10.1007/978-3-319-18827-0_36.
31.
B. W. Ong and B. C. Mandal, Pipeline implementations of Neumann--Neumann and Dirichlet--Neumann waveform relaxation methods, Numer. Algorithms, 78 (2017), pp. 1--20, https://doi.org/10.1007/s11075-017-0364-3.
32.
M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems, Int. J. High Perform. Comput. Appl., 32 (2018), pp. 913--933, https://doi.org/10.1177/1094342016687625.
33.
R. D. Skeel, Waveform iteration and the shifted Picard splitting, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 756--776, https://doi.org/10.1137/0910046.
34.
A. Toselli and O. B. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005.
35.
S. Vandewalle and E. Van de Velde, Space-time concurrent multigrid waveform relaxation, Ann. Numer. Math., 1 (1994), pp. 335--346.
36.
J. White and A. Sangiovanni-Vincentelli, Partitioning algorithms and parallel implementations of waveform relaxation algorithms for circuit simulation, in IEEE Procedings of the International Symposium on Circuits and Systems (ISCAS), IEEE, New York, 1985, pp. 1069--1072.
37.
S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput., 40 (2018), pp. A1446--A1472, https://doi.org/10.1137/17M1141102.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A339 - A364
ISSN (online): 1095-7197

History

Submitted: 20 October 2017
Accepted: 6 November 2018
Published online: 15 January 2019

Keywords

  1. waveform relaxation
  2. domain decomposition
  3. adaptivity
  4. parallel computing

MSC codes

  1. 65Y05
  2. 65M20

Authors

Affiliations

Funding Information

National Natural Science Foundation of China https://doi.org/10.13039/501100001809

Funding Information

Research Grants Council, University Grants Committee https://doi.org/10.13039/501100002920

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media