Abstract

We propose a new data analysis approach for the efficient postprocessing of bundles of finite element data from numerical simulations. The approach is based on the mathematical principles of symmetry. We consider the case where simulations of an industrial product are contained in the space of surface meshes embedded in $\mathbb{R}^3$. Furthermore, we assume that distance preserving transformations exist, albeit unknown, which map simulation to simulation. In this setting, a discrete Laplace--Beltrami operator can be constructed on the mesh, which is invariant to isometric transformations and therefore valid for all simulations. The eigenfunctions of such an operator are used as a common basis for all (isometric) simulations. One can use the projection coefficients instead of the full simulations for further analysis. To extend the idea of invariance, we employ a discrete Fokker--Planck operator, which in the continuous limit converges to an operator invariant to a nonlinear transformation, and use its eigendecomposition accordingly. The data analysis approach is applied to time-dependent datasets from numerical car crash simulations. One observes that only a few spectral coefficients are necessary to describe the data variability, and low-dimensional structures are obtained. The eigenvectors are seen to recover different independent variation modes such as translation, rotation, and global and local deformations. An effective analysis of the data from bundles of numerical simulations is made possible---in particular an analysis for many simulations in time.

Keywords

  1. numerical simulation bundle
  2. data analysis
  3. operator basis

MSC codes

  1. 00A73
  2. 65M99
  3. 62P30

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: A Geometrical Method for Low-Dimensional Representations of Simulations

Authors: Rodrigo Iza-Teran and Jochen Garcke

File: truck_mode_3.mp4

Type: Video File

Contents: 3rd component from figure 4.8, corresponding to a global deformation.


File: truck_mode_4.mp4

Type: Video File

Contents: 4th component from figure 4.8, corresponding to a global deformation.

References

1.
S. Ackermann, L. Gaul, M. Hanss, and T. Hambrecht, Principal Component Analysis for Detection of Globally Important Input Parameters in Nonlinear Finite Element Analysis, IAM Institute of Applied and Experimental Mechanics, Stuttgart, Germany, 2008.
2.
M. Bauer, M. Bruveris, and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision, 50 (2014), pp. 60--97.
3.
M. Ben-Chen and C. Gotsman, On the optimality of spectral compression of mesh data, ACM Trans. Graphics, 24 (2005), pp. 60--80.
4.
B. Bohn, J. Garcke, R. Iza-Teran, A. Paprotny, B. Peherstorfer, U. Schepsmeier, and C.-A. Thole, Analysis of car crash simulation data with nonlinear machine learning methods, in ICCS 2013, Procedia Comput. Sci. 18 (2013), pp. 621--630, https://doi.org/10.1016/j.procs.2013.05.226.
5.
M. Bauer, P. Harms, and P. W. Michor, Sobolev metrics on shape space of surfaces, J. Geom. Mech., 3 (2011), pp. 389--438.
6.
M. Belkin and P. Niyogi, Semi-supervised learning on Riemannian manifolds, Machine Learning, 56 (2004), pp. 209--239.
7.
M. Belkin, J. Sun, and Y. Wang, Discrete Laplace operator on meshed surfaces, in Proceedings of the Symposium on Computational Geometry, SoCG '08, ACM, New York, 2008, pp. 278--287.
8.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, New York, 2006.
9.
F. R. K. Chung, Spectral Graph Theory, AMS, Providence, RI, 1997.
10.
R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5--30.
11.
R. R. Coifman and M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal., 21 (2006), pp. 53--94.
12.
S. Caddemi and M. D. Paola, Hysteretic systems subject to delta correlated input, in Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, P. Spanos and Y. Wu, eds., Springer, New York, 1994, pp. 56--66.
13.
N. El Karoui, On information plus noise kernel random matrices, Ann. Statist., 38 (2010), pp. 3191--3216.
14.
J. Garcke and R. Iza-Teran, Machine learning approaches for data from car crashes and numerical car crash simulations, in NAFEMS 2017, Stockholm, Sweden, 2017.
15.
N. García Trillos and D. Slepčev, A variational approach to the consistency of spectral clustering, Appl. Comput. Harmon. Anal., 45 (2018), pp. 239--281.
16.
R. Iza-Teran, Enabling the analysis of finite element simulation bundles, Internat. J. Uncertainty Quantification, 4 (2014), pp. 95--110, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013005436.
17.
R. Iza-Teran, Geometrical Methods for the Analysis of Simulation Bundles, Dissertation, Institut für Numerische Simulation, Universität Bonn, Bonn, Germany, 2017.
18.
Z. Karni and C. Gotsman, Spectral compression of mesh geometry, in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '00, 2000, pp. 279--286.
19.
D. Kushnir, A. Haddad, and R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification, Appl. Comput. Harmon. Anal., 32 (2012), pp. 280--294.
20.
Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, Linear rotation-invariant coordinates for meshes, ACM Trans. Graphics, 24 (2005), pp. 479--487.
21.
R. Lai, Y. Shi, K. Scheibel, S. Fears, R. Woods, A. Toga, and T. Chan, Metric-induced optimal embedding for intrinsic 3d shape analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Washington, DC, 2010, pp. 2871--2878.
22.
J. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, Springer, New York, 2007.
23.
P. Michor, Topics in Differential Geometry, AMS, Providence, RI, 2008.
24.
P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8 (2006), pp. 1--48.
25.
R. Myers, D. Montgomery, and C. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York, 2009.
26.
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem, SIAM J. Comput., 16 (1987), pp. 647--668, https://doi.org/10.1137/0216045.
27.
A. Marrel, N. Saint-Geours, and M. De Lozzo, Sensitivity analysis of spatial and/or temporal phenomena, in Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi, eds., Springer International Publishing, Cham, 2016, pp. 1--31.
28.
L. Mei and C.-A. Thole, Data analysis for parallel car-crash simulation results and model optimization, Sim. Model. Practice Theory, 16 (2008), pp. 329--337.
29.
M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas, Functional maps: A flexible representation of maps between shapes, ACM Trans. Graphics, 31 (2012), 30.
30.
A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, Springer, New York, 2016.
31.
M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo, Technical section: Discrete Laplace-Beltrami operators for shape analysis and segmentation, Comput. Graph., 33 (2009), pp. 381--390.
32.
S. Rosenberg, The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds, London Math. Soc. Student Texts 31, Cambridge University Press, Cambridge, UK, 1997.
33.
M. Reuter, F. Wolter, and N. Peinecke, Laplace-Beltrami spectra as `Shape-DNA' of surfaces and solids, Computer-Aided Design, 38 (2006), pp. 342--366.
34.
A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comput. Harmon. Anal., 25 (2008), pp. 226--239.
35.
A. Singer, Spectral independent component analysis, Appl. Comput. Harmon. Anal., 21 (2006), pp. 135--144.
36.
A. Singer and H.-T. Wu, Spectral convergence of the connection Laplacian from random samples, Inf. Inference, 6 (2017), pp. 58--123.
37.
C. A. Thole, L. Nikitina, I. Nikitin, and T. Clees, Advanced mode analysis for crash simulation results, in Proceedings of the 9th LS-DYNA Forum, Bamberg, Germany, 2010.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 472 - 496
ISSN (online): 2166-2525

History

Submitted: 27 October 2017
Accepted: 6 February 2019
Published online: 25 April 2019

Keywords

  1. numerical simulation bundle
  2. data analysis
  3. operator basis

MSC codes

  1. 00A73
  2. 65M99
  3. 62P30

Authors

Affiliations

Funding Information

Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347 : SIMDATA-NL, VAVID

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media