Abstract

Let $D$ be a knot diagram, and let ${\mathcal D}$ denote the set of diagrams that can be obtained from $D$ by crossing exchanges. If $D$ has $n$ crossings, then ${\mathcal D}$ consists of $2^n$ diagrams. A folklore argument shows that at least one of these $2^n$ diagrams is unknot, from which it follows that every diagram has finite unknotting number. It is easy to see that this argument can be used to show that actually ${\mathcal D}$ has more than one unknot diagram, but it cannot yield more than $4n$ unknot diagrams. We improve this linear bound to a superpolynomial bound by showing that at least $2^{\sqrt[3]{n}}$ of the diagrams in ${\mathcal D}$ are unknot. We also show that either all the diagrams in ${\mathcal D}$ are unknot or there is a diagram in ${\mathcal D}$ that is a diagram of the trefoil knot.

Keywords

  1. knot shadows
  2. knot diagrams
  3. unknot diagrams
  4. plane curves

MSC codes

  1. 57M25
  2. 05C10
  3. 57M15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, AMS, Providence, RI, 2004.
2.
C. Adams, T. Crawford, B. DeMeo, M. Landry, A. Tong Lin, M. Montee, S. Park, S. Venkatesh, and F. Yhee, Knot projections with a single multi-crossing, J. Knot Theory Ramifications, 24 (2015), 1550011.
3.
J. Arsuaga, T. Blackstone, Y. Diao, E. Karadayi, and M. Saito, Linking of uniform random polygons in confined spaces, J. Phys. A, 40 (2007), pp. 1925--1936.
4.
G. R. Buck, Random knots and energy: Elementary considerations, J. Knot Theory Ramifications 3 (1994), pp. 355--363.
5.
J. Cantarella, H. Chapman, and M. Mastin, Knot probabilities in random diagrams, J. Phys. A, 49 (2016), 405001.
6.
J. Cantarella, A. Henrich, E. Magness, O. O'Keefe, K. Perez, E. Rawdon, and B. Zimmer, Knot fertility and lineage, J. Knot Theory Ramifications, 26 (2017), 1750093.
7.
H. Chapman, Asymptotic laws for knot diagrams, in Proceedings of FPSAC, 2016, pp. 323--334.
8.
H. Chapman, Asymptotic laws for random knot diagrams, J. Phys. A, 50 (2017), 225001.
9.
M. Culler, N. M. Dunfield, M. Goerner, and J. R. Weeks, SnapPy, A Computer Program for Studying the Geometry and Topology of 3-Manifolds, http://snappy.computop.org (2017).
10.
M. Delbruck, Knotting problems in biology, in Mathematical Problems in the Biological Sciences, Proc. Sympos. Appl. Math. 14, R. Bellman, ed., AMS, Providence, RI, 1962, pp. 55--63.
11.
Y. Diao, C. Ernst, and U. Ziegler, Generating large random knot projections, in Physical and Numerical Models in Knot Theory, Ser. Knots Everything 36, World Scientific, Singapore, 2005, pp. 473--494.
12.
Y. Diao, J. C. Nardo, and Y. Sun, Global knotting in equilateral random polygons, J. Knot Theory Ramifications, 10 (2001), pp. 597--607.
13.
Y. Diao, N. Pippenger, and D. Sumners, On random knots, J. Knot Theory Ramifications, 3 (1994), pp. 419--429.
14.
N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, and D. Lei, Random Knots: A Preliminary Report, http://www.math.uiuc.edu/~nmd/preprints/slides/random_knots.pdf (2014).
15.
H.-C. Chang and J. Erickson, Untangling planar curves, in 32nd International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform. 51, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.
16.
C. Even-Zohar, J. Hass, N. Linial, and T. Nowik, Invariants of random knots and links, Discrete Comput. Geom., 56 (2016), pp. 274--314.
17.
H. L. Frisch and E. Wasserman, Chemical topology 1, J. Am. Chem. Soc., 83 (1961), pp. 3789--3795.
18.
T. Gowers, Are There Any Very Hard Unknots?, http://mathoverflow.net/q/53471 (2014).
19.
D. Jungreis, Gaussian random polygons are globally knotted, J. Knot Theory Ramifications, 3 (1994), pp. 455--464.
20.
L. H. Kauffman, State models and the Jones polynomial, Topology, 26 (1987), pp. 395--407.
21.
L. H. Kauffman, Knot diagrammatics, in Handbook of Knot Theory, Elsevier, Amsterdam, 2005, pp. 233--318.
22.
L. H. Kauffman, The unknotting problem, in Open Problems in Mathematics, Springer, New York, 2016, pp. 303--345.
23.
K. C. Millett, Knots in knots: A study of classical knot diagrams, J. Knot Theory Ramifications, 25 (2016), 1641013.
24.
M. Mroczkowski, Diagrammatic unknotting of knots and links in the projective space, J. Knot Theory Ramifications, 12 (2003), pp. 637--651.
25.
K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology, 26 (1987), pp. 187--194.
26.
M. Ozawa, Ascending number of knots and links, J. Knot Theory Ramifications, 19 (2010), pp. 15--25.
27.
N. Pippenger, Knots in random walks, Discrete Appl. Math., 25 (1989), pp. 273--278.
28.
J. H. Przytycki, Positive knots have negative signature, Bull. Polish Acad. Sci. Math., 37 (1989), pp. 559--562.
29.
G. Salazar, How Many Different Knot Types Can Have the Same Shadow (Projection), https://mathoverflow.net/q/250603 (2017).
30.
D. W. Sumners and S. G. Whittington, Knots in self-avoiding walks, J. Phys. A, 21 (1988), pp. 1689--1694.
31.
K. Taniyama, A partial order of knots, Tokyo J. Math., 12 (1989), pp. 205--229.
32.
M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology, 26 (1987), pp. 297--309.
33.
W. T. Tutte, Connectivity in Graphs, Math. Expositions, 15, University of Toronto Press, Toronto, 1966.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 306 - 326
ISSN (online): 1095-7146

History

Submitted: 30 October 2017
Accepted: 17 December 2018
Published online: 5 February 2019

Keywords

  1. knot shadows
  2. knot diagrams
  3. unknot diagrams
  4. plane curves

MSC codes

  1. 57M25
  2. 05C10
  3. 57M15

Authors

Affiliations

Jorge Ramírez-Alfonsín

Funding Information

Laboratorio Internacional Asociado Solomon Lefschetz
Fordecyt : 265667
Consejo Nacional de Ciencia y Tecnología https://doi.org/10.13039/501100003141 : 222667
Universidad Autónoma de San Luis Potosí https://doi.org/10.13039/501100005324

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media