Abstract

Smoothed particle hydrodynamics (SPH) is a popular particle- and kernel-based method for numerically computing solutions to fluid-flow problems. In this paper, we study the convergence of SPH for the Euler equations of a specific barotropic fluid. In contrast to previous works, we distinguish carefully between the smoothing and the discretization parameters and give explicit relations between both of them to guarantee convergence. This convergence heavily depends on certain properties of the underlying kernel. Hence, a large part of this paper is devoted to constructing compactly supported, radial kernels which possess the required properties.

Keywords

  1. Euler equations
  2. smoothed particle hydrodynamics
  3. convergence analysis
  4. kernel-based approximation

MSC codes

  1. 65M15
  2. 35Q31
  3. 65M75
  4. 76M28
  5. 41A30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, J. Comput. Phys., 58 (1985), pp. 188--208.
2.
B. Ben Moussa, On the convergence of SPH method for scalar conservation laws with boundary conditions, Methods Appl. Anal., 13 (2006), pp. 29--61.
3.
B. Ben Moussa and J. P. Vila, Convergence of SPH method for scalar nonlinear conservation laws, SIAM J. Numer. Anal., 37 (2000), pp. 863--887, https://doi.org/10.1137/S0036142996307119.
4.
A. Chernih, Multiscale Wendland Radial Basis Functions and Applications to Solving Partial Differential Equations, Ph.D. thesis, University of New South Wales, Sydney, Australia, 2013.
5.
A. Chernih and S. Hubbert, Closed form representations and properties of the generalised Wendland functions, J. Approx. Theory, 177 (2014), pp. 17--33.
6.
W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices Roy. Astronom. Soc., 425 (2012), pp. 1068--1082.
7.
R. Di Lisio, A particle method for a self-gravitating fluid: A convergence result, Math. Methods Appl. Sci., 18 (1995), pp. 1083--1094.
8.
R. Di Lisio, E. Grenier, and M. Pulvirenti, On the regularization of the pressure field in compressible Euler equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), pp. 227--238.
9.
R. Di Lisio, E. Grenier, and M. Pulvirenti, The convergence of the SPH method, Comput. Math. Appl., 35 (1998), pp. 95--102.
10.
W. Ehm, T. Gneiting, and D. Richards, Convolution roots of radial positive definite functions with compact support, Trans. Amer. Math. Soc., 356 (2004), pp. 4655--4685.
11.
M. Feistauer, J. Felcman, and I. Straškraba, Mathematical and Computational Methods for Compressible Flow, Oxford University Press, 2003.
12.
R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Monthly Notices Roy. Astronom. Soc., 181 (1977), pp. 375--389.
13.
S. Hubbert, Closed form representations for a class of compactly supported radial basis functions, Adv. Comput. Math., 36 (2012), pp. 115--136.
14.
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), pp. 181--205.
15.
G. Liu and M. Liu, Smoothed Particle Hydrodynamics---A Meshfree Particle Method, World Scientific, 2003.
16.
L. Lucy, A numerical approach to the testing of the fission hypothesis, Astronom. J., 82 (1977), pp. 1013--1024.
17.
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
18.
T. Makino, S. Ukai, and S. Kawashima, On Compactly Supported Solutions of the Compressible Euler Equation, in Recent Topics in Nonlinear PDE, III (Tokyo, 1986), North-Holland Math. Stud. 148, North-Holland, 1987, pp. 173--183.
19.
J. Monaghan, Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., 44 (2012), pp. 323--346.
20.
J. J. Monaghan, Smoothed particle hydrodynamics, Rep. Progr. Phys., 68 (2005), pp. 1703--1759.
21.
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, 2004.
22.
K. Oelschläger, On the connection between Hamiltonian many-particle systems and the hydrodynamical equations, Arch. Rational Mech. Anal., 115 (1991), pp. 297--310.
23.
T. Ramming and H. Wendland, A kernel-based discretisation method for first order partial differential equations, Math. Comp., 87 (2018), pp. 1757--1781.
24.
P. A. Raviart, An Analysis of Particle Methods, in Numerical Methods in Fluid Dynamics, Como, 1983, Lecture Notes in Math. 1127, Springer, 1985, pp. 243--324.
25.
R. Schaback, The missing Wendland functions, Adv. Comput. Math., 34 (2011), pp. 67--81.
26.
E. M. Stein and G. Weiss, Fourier Analysis in Euclidean Spaces, Princeton University Press, 1971.
27.
J. P. Vila, On particle weighted methods and smooth particle hydrodynamics, Math. Models Methods Appl. Sci., 9 (1999), pp. 161--209.
28.
D. Violeau, Fluid Mechanics and the SPH Method---Theory and Applications, Oxford University Press, 2012.
29.
H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4 (1995), pp. 389--396.
30.
H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2005.
31.
H. Wendland, Multiscale Radial Basis Functions, in Frames and Other Bases in Abstract and Function Spaces -- Novel Methods in Harmonic Analysis, Volume 1, I. Pesenson, Q. T. L. Gia, A. Mayeli, H. Mhaskar, and D.-X. Zhou, eds., Birkhäuser, 2017, pp. 265--299.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4752 - 4784
ISSN (online): 1095-7154

History

Submitted: 20 November 2017
Accepted: 20 June 2018
Published online: 6 September 2018

Keywords

  1. Euler equations
  2. smoothed particle hydrodynamics
  3. convergence analysis
  4. kernel-based approximation

MSC codes

  1. 65M15
  2. 35Q31
  3. 65M75
  4. 76M28
  5. 41A30

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : WE 2333/9-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media