Abstract

For decades, randomized exponential backoff has provided a critical algorithmic building block in situations where multiple devices seek access to a shared resource. Despite this history, the performance of standard exponential backoff is poor under worst-case scheduling of demands on the resource: (i) subconstant throughput can occur under plausible scenarios, and (ii) each of $N$ devices requires $\Omega(\log N)$ access attempts before obtaining the resource. In this paper, we address these shortcomings by offering a new backoff protocol for a shared communication channel that guarantees expected constant throughput with only $O(\log(\log^* N))$ channel accesses in expectation, even when packet arrivals are scheduled by an adversary. Central to this result are new algorithms for approximate counting and leader election with the same performance guarantees.

Keywords

  1. contention resolution
  2. distributed computing
  3. algorithms
  4. wireless networks
  5. throughput
  6. adversarial scheduling

MSC codes

  1. 68W15
  2. 68W20
  3. 68W40
  4. 68M12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
IEEE Standard for Information Technology--Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks -- Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), (2016).
2.
L. Anantharamu, B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki, Medium access control for adversarial channels with jamming, in Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO), Springer, Berlin, 2011, pp. 89--100.
3.
L. Anantharamu, B. S. Chlebus, and M. A. Rokicki, Adversarial multiple access channel with individual injection rates, in Proceedings of the 13th International Conference on Principles of Distributed Systems (OPODIS), Springer, Heidelberg, 2009, pp. 174--188.
4.
G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori, Performance measurements of motes sensor networks, in Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM '04, ACM, New York, 2004, pp. 174--181.
5.
W. C. Anderton and M. Young, Is our model for contention resolution wrong?: Confronting the cost of collisions, in Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '17, ACM, New York, 2017, pp. 183--194.
6.
A. F. Anta, M. A. Mosteiro, and J. R. Mun͂oz, Unbounded contention resolution in multiple-access channels, Algorithmica, 67 (2013), pp. 295--314.
7.
C. Avin, Y. Emek, E. Kantor, Z. Lotker, D. Peleg, and L. Roditty, SINR diagrams: Towards algorithmically usable SINR models of wireless networks, in Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2009, pp. 200--209.
8.
B. Awerbuch, A. Richa, and C. Scheideler, A jamming-resistant MAC protocol for single-hop wireless networks, in Proceedings of the 27th ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2008, pp. 45--54.
9.
Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput., 29 (1999), pp. 180--200.
10.
R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization, J. Comput. System Sci., 45 (1992), pp. 104--126.
11.
M. A. Bender, M. Farach-Colton, S. He, B. C. Kuszmaul, and C. E. Leiserson, Adversarial contention resolution for simple channels, in Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM, New York, ACM, New York, 2005, pp. 325--332.
12.
M. A. Bender, J. T. Fineman, and S. Gilbert, Contention resolution with heterogeneous job sizes, in Proceedings of the 14th Annual European Symposium on Algorithms (ESA), Springer, Berlin, 2006, pp. 112--123.
13.
M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young, How to scale exponential backoff: Constant throughput, polylog access attempts, and robustness, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2016, pp. 636--654.
14.
M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young, Contention resolution with log-logstar channel accesses, in Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC '16, ACM, New York, 2016, pp. 499--508.
15.
P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice balanced allocation in (almost) parallel, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM), Springer, Berlin, 2012, pp. 411--422.
16.
P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: The heavily loaded case, SIAM J. Comput., 35 (2006), pp. 1350--1385.
17.
P. Berenbrink, K. Khodamoradi, T. Sauerwald, and A. Stauffer, Balls-into-bins with nearly optimal load distribution, in Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM, New York, 2013, pp. 326--335.
18.
D. J. Bernstein, qmail, http://cr.yp.to/qmail.html (1998).
19.
G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function, IEEE J. Sel. Areas Commun., 18 (2006), pp. 535--547.
20.
G. Bianchi and I. Tinnirello, Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network, in Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Vol. 2, IEEE, Piscataway, NJ, 2003, pp. 844--852.
21.
P. Brandes, M. Kardas, M. Klonowski, D. Pajak, and R. Wattenhofer, Approximating the size of a radio network in beeping model, in Proceedings of the 23rd International Colloquium Structural Information and Communication Complexity (SIROCCO), Springer, Cham, Switzerland, 2016, pp. 358--373.
22.
F. Cali, M. Conti, and E. Gregori, Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit, IEEE/ACM Trans. Netw., 8 (2000), pp. 785--799.
23.
F. Cali, M. Conti, and E. Gregori, IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism, IEEE J. Sel. Areas Commun., 18 (2000), pp. 1774--1786.
24.
A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari, Counting in One-Hop Beeping Networks, preprints, arXiv:1605.09516, 2016.
25.
A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin, Statistical model of lossy links in wireless sensor networks, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN), IEEE, Piscataway, NJ, 2005, pp. 81--88.
26.
Y. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan, Exponential separations in the energy complexity of leader election, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 2017, ACM, New York, 2017, pp. 771--783.
27.
B. S. Chlebus, G. De Marco, and D. R. Kowalski, Scalable wake-up of multi-channel single-hop radio networks, Theoret. Comput. Sci., 615 (2016), pp. 23--44.
28.
B. S. Chlebus, L. Gasieniec, D. R. Kowalski, and T. Radzik, On the wake-up problem in radio networks, in Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP), Springer, Berlin, 2005, pp. 347--359.
29.
B. S. Chlebus and D. R. Kowalski, A better wake-up in radio networks, in Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2004, pp. 266--274.
30.
B. S. Chlebus and D. R. Kowalski, Randomization helps to perform independent tasks reliably, Random Structures Algorithms, 24 (2004), pp. 11--41.
31.
B. S. Chlebus, D. R. Kowalski, and M. A. Rokicki, Adversarial queuing on the multiple access channel, ACM Trans. Algorithms, 8 (2012), 5.
32.
M. Chrobak, L. Gasieniec, and D. R. Kowalski, The wake-up problem in multihop radio networks, SIAM J. Comput., 36 (2007), pp. 1453--1471.
33.
R. Cole, A. M. Frieze, B. M. Maggs, M. Mitzenmacher, A. W. Richa, R. K. Sitaraman, and E. Upfal, On balls and bins with deletions, in Proceedings of the Second International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM), Springer, Berlin, 1998, pp. 145--158.
34.
A. Cornejo and F. Kuhn, Deploying wireless networks with beeps, in Proceedings of the 24th International Symposium on Distributed Computing (DISC), Springer, Berlin, 2010, pp. 148--162.
35.
B. Costales and E. Allman, Sendmail, 3rd ed., O'Reilly, Sebastopol, CA, 2002.
37.
G. De Marco and G. Stachowiak, Asynchronous shared channel, in Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC '17, ACM, New York, 2017, pp. 391--400.
39.
J. T. Fineman, S. Gilbert, F. Kuhn, and C. Newport, Contention resolution on a fading channel, in Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2016, pp. 155--164.
40.
S. Ganeriwal, C. Pöpper, S. C̆apkun, and M. B. Srivastava, Secure time synchronization in sensor networks, ACM Trans. Inform. System Security, 11 (2008), pp. 1--35.
41.
M. Geréb-Graus and T. Tsantilas, Efficient optical communication in parallel computers, in Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), ACM, New York, 1992, pp. 41--48.
42.
S. Gilbert and C. Newport, The computational power of beeps, in Proceedings of the International Symposium on Distributed Computing (DISC), Springer, Berlin, 2015, pp. 31--46.
43.
L. A. Goldberg and P. D. MacKenzie, Analysis of practical backoff protocols for contention resolution with multiple servers, J. Comput. System Sci., 58 (1999), pp. 232--258, https://doi.org/10.1006/jcss.1998.1590.
44.
L. A. Goldberg, P. D. Mackenzie, M. Paterson, and A. Srinivasan, Contention resolution with constant expected delay, J. ACM, 47 (2000), pp. 1048--1096.
45.
J. Goodman, A. G. Greenberg, N. Madras, and P. March, Stability of binary exponential backoff, J. ACM, 35 (1988), pp. 579--602.
46.
Google, Google Cloud Messaging: Overview, http://developer.android.com/google/gcm/adv.html#retry (2014).
47.
A. G. Greenberg, P. Flajolet, and R. E. Ladner, Estimating the multiplicities of conflicts to speed their resolution in multiple access channels, J. ACM, 34 (1987), pp. 289--325.
48.
A. G. Greenberg and S. Winograd, A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels, JACM, 32 (1985), pp. 589--596.
49.
R. I. Greenberg and C. E. Leiserson, Randomized routing on fat-trees, in Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, Los Angeles, 1985, pp. 241--249.
50.
M. M. Halldórsson and R. Wattenhofer, Wireless communication is in APX, in 36th International Colloquium on Automata, Languages and Programming (ICALP), Springer, Berlin, 2009, pp. 525--536.
51.
J. H\rastad, T. Leighton, and B. Rogoff, Analysis of backoff protocols for multiple access channels, SIAM J. Comput., 25 (1996), pp. 740--774.
52.
M. Herlihy and J. E. B. Moss, Transactional memory: Architectural support for lock-free data structures, in Proceedings of the 20th International Conference on Computer Architecture, IEEE Computer Society, Los Alamitos, CA, 1993, pp. 289--300, https://dl.acm.org/citation.cfm?id=165164.
53.
V. Jacobson, Congestion avoidance and control, SIGCOMM Comput. Commun. Rev., 18 (1988), pp. 314--329.
54.
T. Jurdzinski and G. Stachowiak, The cost of synchronizing multiple-access channels, in Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2015, pp. 421--430.
55.
Y. Li, W. Ye, and J. Heidemann, Energy and latency control in low duty cycle MAC protocols, in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), IEEE, Piscataway, NJ, 2005, pp. 676--682.
56.
G. D. Marco and D. R. Kowalski, Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel, SIAM J. Comput., 44 (2015), pp. 868--888.
57.
G. D. Marco and D. R. Kowalski, Contention resolution in a non-synchronized multiple access channel, Theoret. Comput. Sci., 689 (2017), pp. 1--13.
59.
R. M. Metcalfe and D. R. Boggs, Ethernet: Distributed packet switching for local computer networks, Commun. ACM, 19 (1976), pp. 395--404.
60.
M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE Trans. Parallel Distrib. Syst., 12 (2001), pp. 1094--1104.
61.
A. Mondal and A. Kuzmanovic, Removing exponential backoff from TCP, SIGCOMM Comput. Commun. Rev., 38 (2008), pp. 17--28.
62.
T. Moscibroda, The worst-case capacity of wireless sensor networks, in Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN), IEEE, Piscataway, NJ, 2007, pp. 1--10.
63.
K. Nakano and S. Olariu, Uniform leader election protocols for radio networks, IEEE Trans. Parallel Distrib. Syst., 13 (2002), pp. 516--526, https://doi.org/10.1109/TPDS.2002.1003864.
64.
C. Newport, Radio network lower bounds made easy, in Proceedings of the 28th International Symposium on Distributed Computing (DISC), Springer, Berlin, 2014, pp. 258--272, https://doi.org/10.1007/978-3-662-45174-8_18.
65.
A. Ogierman, A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Sade: competitive MAC under adversarial SINR, Distrib. Comput., 31 (2018), pp. 241--254.
66.
G. A. Platform, Google Documents List API Version 3.0: Implementing Exponential Backoff. https://cloud.google.com/iot/docs/how-tos/exponential-backoff, 2011.
67.
J. Polastre, R. Szewczyk, and D. Culler, Telos: Enabling ultra-low power wireless research, in Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks (IPSN), IEEE, Piscataway, NJ, 2005, pp. 364--369.
68.
P. Raghavan and E. Upfal, Stochastic contention resolution with short delays, SIAM J. Comput., 28 (1998), pp. 709--719.
69.
R. Rajwar and J. R. Goodman, Speculative lock elision: Enabling highly concurrent multithreaded execution, in Proccedings of the 34th Annual International Symposium on Microarchitecture, Austin, Texas, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 294--305, http://www.cs.wisc.edu/~rajwar/papers/micro01.pdf.
70.
A. Richa, C. Scheideler, S. Schmid, and J. Zhang, A jamming-resistant MAC protocol for multi-hop wireless networks, in Proceedings of the International Symposium on Distributed Computing (DISC), Springer, Berlin, 2010, pp. 179--193.
71.
A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Competitive and fair medium access despite reactive jamming, in Proceedings of the 31st International Conference on Distributed Computing Systems (ICDCS), IEEE, Piscataway, NJ, 2011, pp. 507--516.
72.
A. Richa, C. Scheideler, S. Schmid, and J. Zhang, Competitive and fair throughput for co-existing networks under adversarial interference, in Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC), ACM, New York, 2012, pp. 291--300.
73.
A. W. Richa, M. Mitzenmacher, and R. Sitaraman, The power of two random choices: A survey of techniques and results, Comb. Optimization, 9 (2001), pp. 255--304.
74.
G. Rob van der Meulen, Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent from 2016, http://www.gartner.com/newsroom/id/3598917 (2017).
75.
F. B. Schneider, Implementing fault-tolerant services using the state machine approach: A tutorial, ACM Comput. Surv., 22(4) (1990), pp. 299--319.
76.
A. W. Services, Error Retries and Exponential Backoff in AWS, http://docs.aws.amazon.com/general/latest/gr/api-retries.html, 2012.
77.
N.-O. Song, B.-J. Kwak, and L. E. Miller, On the stability of exponential backoff, J. Res. Natl. Inst. Standards Technol., 108 (2003), pp. 289--297.
78.
S. Teymori and W. Zhuang, Queue analysis for wireless packet data traffic, in International Conference on Research in Networking, Springer, Berlin, 2005, pp. 217--227.
79.
B. Vöcking, How asymmetry helps load balancing, J. ACM, 50 (2003), pp. 568--589.
80.
M. K. Weldon, The Future X Network: A Bell Labs Perspective, 1st ed., CRC Press, Boca Raton, FL, 2015.
81.
D. E. Willard, Log-logarithmic selection resolution protocols in a multiple access channel, SIAM J. Comput., 15 (1986), pp. 468--477.
82.
J. Yu and A. P. Petropulu, Study of the effect of the wireless gateway on incoming self-similar traffic, IEEE Trans. Signal Process., 54 (2006), pp. 3741--3758.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1735 - 1754
ISSN (online): 1095-7111

History

Submitted: 29 November 2017
Accepted: 6 August 2018
Published online: 2 October 2018

Keywords

  1. contention resolution
  2. distributed computing
  3. algorithms
  4. wireless networks
  5. throughput
  6. adversarial scheduling

MSC codes

  1. 68W15
  2. 68W20
  3. 68W40
  4. 68M12

Authors

Affiliations

Funding Information

NetApp
Research gift from C Spire
Sandia National Laboratories https://doi.org/10.13039/100006234
National Science Foundation https://doi.org/10.13039/100000001 : CCF-1217708, CCF-1439084, CCF-1217338, CCF-1514383, CCF-1613772
National Science Foundation https://doi.org/10.13039/100000001 : IIS-1247726, IIS-1251137
National Science Foundation https://doi.org/10.13039/100000001 : CNS-1408695, CNS-1318294
National Science Foundation https://doi.org/10.13039/100000001 : CCF-1617618, CCF-1763680, CCF-1716252, CCF-1725543, CNS-1755615

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media