Closing in on Hill's Conjecture
Abstract
Borrowing László Székely's lively expression, we show that Hill's conjecture is “asymptotically at least $98.5\%$ true.” This long-standing conjecture states that the crossing number cr$(K_n)$ of the complete graph $K_n$ is $H(n) := \frac{1}{4}{\lfloor\frac{n}{2}\rfloor}{\lfloor\frac{n-1}{2}\rfloor}{\lfloor\frac{n-2}{2}\rfloor}{\lfloor\frac{n-3}{2}\rfloor}$ for all $n\ge 3$. This has been verified only for $n\le 12$. Using the flag algebra framework, Norin and Zwols obtained the best known asymptotic lower bound for the crossing number of complete bipartite graphs, from which it follows that for every sufficiently large $n$, cr$(K_n) > 0.905\, H(n)$. Also using this framework, we prove that asymptotically cr$(K_n)$ is at least $0.985\, H(n)$. We also show that the spherical geodesic crossing number of $K_n$ is asymptotically at least $0.996\, H(n)$.
1. , All good drawings of small complete graphs, in Proceedings of the 31st European Workshop on Computational Geometry (EuroCG '15), Ljubljana , Slovenia , 2015 , pp. 57 -- 60 .
2. , Bishellable drawings of $K_n$, in Proceedings of the XVII Encuentros de Geometría Computacional, Alicante , Spain , 2017 , pp. 17 -- 20 .
3. , More on the crossing number of $K_n$: Monotone drawings , Electron. Notes Discrete Math. , 44 ( 2013 ), pp. 411 -- 414 .
4. , The $2$-page crossing number of $K_n$ , Discrete Comput. Geom. , 49 ( 2013 ), pp. 747 -- 777 .
5. , Shellable drawings and the cylindrical crossing number of $K_n$ , Discrete Comput. Geom. , 52 ( 2014 ), pp. 743 -- 753 .
6. B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and B. Vogtenhuber, Non-shellable drawings of $K_n$ with few crossings, in Proceedings of the 26th Annual Canadian Conference on Computational Geometry (CCCG '14), Halifax, Nova Scotia, Canada, 2014.
7. , Levi's lemma, pseudolinear drawings of ${K}_n$, and empty triangles , J. Graph Theory , 87 ( 2018 ), pp. 443 -- 459 .
8. A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar, Convex Drawings of the Complete Graph: Topology Meets Geometry, manuscript, 2017.
9. , Drawings of $K_n$ with the same rotation scheme are the same up to triangle-flips (Gioan's theorem) , Australas. J. Combin. , 67 ( 2017 ), pp. 131 -- 144 .
10. , Hypergraphs do jump , Combin. Probab. Comput. , 20 ( 2011 ), pp. 161 -- 171 .
11. , Crossing numbers and combinatorial characterization of monotone drawings of $K_n$ , Discrete Comput. Geom. , 53 ( 2015 ), pp. 107 -- 143 .
12. , Maximum density of induced $5$-cycle is achieved by an iterated blow-up of 5-cycle , European J. Combin. , 52 ( 2016 ), pp. 47 -- 58 , https://doi.org/10.1016/j.ejc.2015.08.006.
13. , Rainbow triangles in three-colored graphs , J. Combin. Theory Ser. B , 126 ( 2017 ), pp. 83 -- 113 , https://doi.org/10.1016/j.jctb.2017.04.002.
14. , The early history of the brick factory problem , Math. Intelligencer , 32 ( 2010 ), pp. 41 -- 48 .
15. , A minimal problem concerning complete plane graphs, in Theory of Graphs and Its Applications (Proc. Sympos. Smolenice, 1963), Publishing House of the Czechoslovak Academy of Sciences , Prague , 1964 , pp. 113 -- 117 .
16. , Zarankiewicz's conjecture is finite for each fixed m , J. Combin. Theory Ser. B , 103 ( 2013 ), pp. 237 -- 247 , https://doi.org/10.1016/j.jctb.2012.11.001.
17. , Improved bounds for the crossing numbers of $K_{m,n}$ and $K_n$ , SIAM J. Discrete Math. , 20 ( 2006 ), pp. 189 -- 202 , https://doi.org/10.1137/S0895480104442741.
18. , Reduction of symmetric semidefinite programs using the regular $\ast$-representation , Math. Program. , 109 ( 2007 ), pp. 613 -- 624 .
19. , On crossing numbers of complete tripartite and balanced complete multipartite graphs , J. Graph Theory , 84 ( 2017 ), pp. 552 -- 565 , https://doi.org/10.1002/jgt.22041.
20. , Complete graph drawings up to triangle mutations, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in Comput. Sci. 3787, Springer , Berlin , 2005 , pp. 139 -- 150 , https://doi.org/10.1007/11604686_13.
21. X. Goaoc, A. Hubard, R. De Joannis De Verclos, J.-S. Sereni, and J. Volec, Limits of order types, in 31st International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform. 34, Lars Arge and János Pach, eds., Schloss Dagstuhl Leibniz-Zentrum fur Informatik, Wadern, Germany, pp. 300--314.
22. , The decline and fall of Zarankiewicz's theorem, in Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), Academic Press , New York , 1969 , pp. 63 -- 69 .
23. , Latest results on crossing numbers, in Recent Trends in Graph Theory (Proc. Conf., New York, 1970), Lecture Notes in Math. 186, Springer , Berlin , 1971 , pp. 143 -- 156 .
24. , On the number of crossings in a complete graph , Proc. Edinburgh Math. Soc. (2) , 13 ( 1962/1963 ), pp. 333 -- 338 , https://doi.org/10.1017/S0013091500025645.
25. , On the number of pentagons in triangle-free graphs , J. Combin. Theory Ser. A , 120 ( 2013 ), pp. 722 -- 732 .
26. , The crossing number of $K_{5,n}$ , J. Combinatorial Theory , 9 ( 1970 ), pp. 315 -- 323 .
27. . Sereni, A new lower bound based on Gromov's method of selecting heavily covered points , Discrete Comput. Geom. , 48 ( 2012 ), pp. 487 -- 498 .
28. , Improved enumeration of simple topological graphs , Discrete Comput. Geom. , 50 ( 2013 ), pp. 727 -- 770 .
29. , Simple realizability of complete abstract topological graphs simplified, in Graph Drawing and Network Visualization, Lecture Notes in Comput. Sci. 9411, Springer , Cham , 2015 , pp. 309 -- 320 , https://doi.org/10.1007/978-3-319-27261-0_26.
30. , On the crossing number of $K_{13}$ , J. Combin. Theory Ser. B , 115 ( 2015 ), pp. 224 -- 235 .
31. , A parity theorem for drawings of complete and complete bipartite graphs , Amer. Math. Monthly , 117 ( 2010 ), pp. 267 -- 273 .
32. , On the crossing number of $K_n$ without computer assistance , J. Graph Theory , 82 ( 2016 ), pp. 387 -- 432 .
33. , On the distribution of crossings in random complete graphs , J. Soc. Indust. Appl. Math. , 13 ( 1965 ), pp. 506 -- 510 , https://doi.org/10.1137/0113032.
34. S. Norin and Y. Zwols, Presentation at the BIRS Workshop on Geometric and Topological Graph Theory (13w5091), https://www.birs.ca/events/2013/5-day-workshops/13w5091/videos/watch/201310011538-Norin.html, 2013 (accessed: 2017-08-28).
35. J. Pammer, Rotation Systems and Good Drawings, Master's thesis, Graz University of Technology, Graz, Austria, 2014.
36. , The crossing number of $K_{11}$ is 100 , J. Graph Theory , 56 ( 2007 ), pp. 128 -- 134 .
37. , Minimum number of $k$-cliques in graphs with bounded independence number , Combin. Probab. Comput. , 22 ( 2013 ), pp. 910 -- 934 .
38. , J. Symbolic Logic , 72 ( 2007 ), pp. 1239 -- 1282 , https://doi.org/10.2178/jsl/1203350785.
39. , On the minimal density of triangles in graphs , Combin. Probab. Comput. , 17 ( 2008 ), pp. 603 -- 618 , https://doi.org/10.1017/S0963548308009085.
40. : An interim report, in The Mathematics of Paul Erdös. II, Springer , New York , 2013 , pp. 207 -- 232 .
41. , Relations between crossing numbers of complete and complete bipartite graphs , Amer. Math. Monthly , 104 ( 1997 ), pp. 131 -- 137 .
42. brick factory problem: The status of the conjectures of Zarankiewicz and Hill, in Graph Theory---Favorite Conjectures and Open Problems. 1, Probl. Books in Math., Springer , Cham , 2016 , pp. 211 -- 230 .
43. , A note of welcome , J. Graph Theory , 1 ( 1977 ), pp. 7 -- 9 .
44. U. Wagner, On a geometric generalization of the upper bound theorem, in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS '06), Berkeley, CA, 2006, pp. 635--645.