Abstract

The present paper shows a mathematical formalization of---as well as algorithms and software for computing---volume-optimal cycles. Volume-optimal cycles are useful for understanding geometric features appearing in a persistence diagram. Volume-optimal cycles provide concrete and optimal homologous structures, such as rings or cavities, on a given dataset. The key idea is the optimality on a $(q + 1)$-chain complex for a $q$th homology generator. This optimality formalization is suitable for persistent homology. We can solve the optimization problem using linear programming. For an alpha filtration on $\mathbb{R}^n$, volume-optimal cycles on an $(n-1)$st persistence diagram are more efficiently computable using a merge-tree algorithm. The merge-tree algorithm also provides a tree structure on the diagram containing richer information than volume-optimal cycles. The key mathematical idea used here is Alexander duality.

Keywords

  1. persistent homology
  2. algebraic topology
  3. optimization

MSC codes

  1. 55N99
  2. 90C05
  3. 55U99

Formats available

You can view the full content in the following formats:

References

1.
U. Bauer, M. Kerber, and J. Reininghaus, Distributed computation of persistent homology, in Proceedings of the Meeting on Algorithm Engineering & Experiments, SIAM, Philadelphia, PA, 2014, pp. 31--38, https://doi.org/10.1137/1.9781611973198.4.
2.
U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, Phat---persistent homology algorithms toolbox, J. Symbolic Comput., 78 (2017), pp. 76--90, https://doi.org/10.1016/j.jsc.2016.03.008.
3.
G. Carlsson, Topology and data, Bull. Amer. Math. Soc., 46 (2009), pp. 255--308, https://doi.org/10.1090/S0273-0979-09-01249-X.
4.
J. M. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 18566--18571, https://doi.org/10.1073/pnas.1313480110.
5.
C. Chen and D. Freedman, Hardness results for homology localization, Discrete Comput. Geom., 45 (2011), pp. 425--448, https://doi.org/10.1007/s00454-010-9322-8.
6.
Clp (Coin- or Linear Programming), https://projects.coin-or.org/Clp.
7.
V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7 (2007), pp. 339--358.
8.
T. K. Dey, A. N. Hirani, and B. Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming, SIAM J. Comput., 40 (2011), pp. 1026--1044, https://doi.org/10.1137/100800245.
9.
D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 9446--9451, https://doi.org/10.1073/pnas.0502269102.
10.
H. Edelsbrunner, Weighted Alpha Shapes, tech. report, University of Illinois at Urbana-Champaign, Champaign, IL, 1992.
11.
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, AMS, Providence, RI, 2010.
12.
H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002), pp. 511--533, https://doi.org/10.1007/s00454-002-2885-2.
13.
H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes, ACM Trans. Graph., 13 (1994), pp. 43--72, https://doi.org/10.1145/174462.156635.
14.
K. Emmett, B. Schweinhart, and R. Rabadan, Multiscale topology of chromatin folding, in Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), BICT'15, ICST, Brussels, Belgium, 2016, pp. 177--180, https://doi.org/10.4108/eai.3-12-2015.2262453.
15.
J. Erickson and K. Whittlesey, Greedy optimal homotopy and homology generators, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '05, SIAM, Philadelphia, PA, 2005, pp. 1038--1046.
16.
E. G. Escolar and Y. Hiraoka, Optimal Cycles for Persistent Homology Via Linear Programming, Springer Japan, Tokyo, 2016, pp. 79--96, https://doi.org/10.1007/978-4-431-55420-2_5.
17.
Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union problems, ACM Comput. Surv., 23 (1991), pp. 319--344, https://doi.org/10.1145/116873.116878.
18.
Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura, Hierarchical structures of amorphous solids characterized by persistent homology, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 7035--7040, https://doi.org/10.1073/pnas.1520877113.
19.
T. Ichinomiya, I. Obayashi, and Y. Hiraoka, Persistent homology analysis of craze formation, Phys. Rev. E, 95 (2017), 012504, https://doi.org/10.1103/PhysRevE.95.012504.
20.
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Springer, New York, 2004.
21.
I. Obayashi, Y. Hiraoka, and M. Kimura, Persistence diagrams with linear machine learning models, J. Appl. Comput. Topology, 1 (2018), pp. 421--449, https://doi.org/10.1007/s41468-018-0013-5.
22.
M. Saadatfar, H. Takeuchi, V. Robins, N. Francois, and Y. Hiraoka, Pore configuration landscape of granular crystallization, Nature Commun., 8 (2017), 15082, https://doi.org/10.1038/ncomms15082.
23.
B. Schweinhart, Statistical Topology of Embedded Graphs, Ph.D. thesis, Princeton University, 2015, https://web.math.princeton.edu/~bschwein/.
24.
A. Tahbaz-Salehi and A. Jadbabaie, Distributed coverage verification in sensor networks without location information, in Proc. 47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 4170--4176, https://doi.org/10.1109/CDC.2008.4738751.
25.
A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete Comput. Geom., 33 (2005), pp. 249--274, https://doi.org/10.1007/s00454-004-1146-y.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 508 - 534
ISSN (online): 2470-6566

History

Submitted: 14 December 2017
Accepted: 22 August 2018
Published online: 23 October 2018

Keywords

  1. persistent homology
  2. algebraic topology
  3. optimization

MSC codes

  1. 55N99
  2. 90C05
  3. 55U99

Authors

Affiliations

Funding Information

Innovative Structural Materials Association https://doi.org/10.13039/100010757
Core Research for Evolutional Science and Technology https://doi.org/10.13039/501100003382 : 15656429
Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 : JP 16K17638

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media