On Matching, and Even Rectifying, Dynamical Systems through Koopman Operator Eigenfunctions
Abstract
Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g., through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of “Cole--Hopf-type" transformations for dynamics.
1. Lie series and optimal control of non-linear partial differential equations , Internat. J. Systems Sci. , 23 ( 1992 ), pp. 663 -- 675 , https://doi.org/10.1080/00207729208949241.
2. , Applied and Computational Measurable Dynamics , Math. Model. Comput. , SIAM , Philadelphia , 2013 .
3. , On comparing dynamical systems by defective conjugacy: A symbolic dynamics interpretation of commuter functions , Phys. D , 239 ( 2010 ), pp. 579 -- 590 .
4. , Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc , Natl. Acad. Sci. USA , 113 ( 2016 ), pp. 3932 -- 3937 .
5. , Applied Koopmanism , Chaos , 22 ( 2012 ), 047510 .
6. , Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , Acta Math. , 59 ( 1932 ), pp. 63 -- 87 , https://doi.org/10.1007/BF02546499.
7. , Ordinary Differential Equations with Applications , Springer , New York , 2006 , https://doi.org/10.1007/b97645.
8. , Delay-Coordinate Maps and the Spectra of Koopman Operators, preprint, arXiv, https://arxiv.org/abs/1706.08544v1 ( 2017 ). , https://arxiv.org/abs/1706.08544v1.
9. , Continuations of the nonlinear Schrödinger equation beyond the singularity , Nonlinearity , 24 ( 2011 ), pp. 2003 -- 2045 , https://doi.org/10.1088/0951-7715/24/7/006.
10. , Spectral signature of the pitchfork bifurcation: Liouville equation approach , Phys. Rev. E (3) , 51 ( 1995 ), 74 .
11. , Spatiotemporal feature extraction with data-driven Koopman operators , J. Mach. Learn. Res. Proc. , 44 ( 2015 ), pp. 103 -- 115 .
12. , Matrix Computations , Vol. 3 , Johns Hopkins University Press , Baltimore, MD , 2012 .
13. . von Neumann, Operator methods in classical mechanics, II , Ann. Math. (2) , 43 ( 1942 ), pp. 332 -- 350 .
14. , Data-Driven Discovery of Koopman Eigenfunctions for Control, preprint, arXiv, https://arxiv.org/abs/1707.01146v1 ( 2017 ). , https://arxiv.org/abs/1707.01146v1.
15. , J. Differential Equations , 3 ( 1967 ), pp. 546 -- 570 .
16. , An Equal Space for Complex Data with Unknown Internal Order: Observability, Gauge Invariance and Manifold Learning, preprint, arXiv, https://arxiv.org/abs/1708.05406v1 ( 2017 ). , https://arxiv.org/abs/1708.05406v1.
17. , Data-Driven Model Reduction and Transfer Operator Approximation, preprint, arXiv, https://arxiv.org/abs/1703.10112v1 ( 2017 ). , https://arxiv.org/abs/1703.10112v1.
18. , Nonlinear Dynamical Systems and Carleman , World Scientific , Singapore , 1991 , http://www.ebook.de/de/product/4355844/nonlinear_dynamical_systems_and_carleman.html. , http://www.ebook.de/de/product/4355844/nonlinear_dynamical_systems_and_carleman.html.
19. , Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems , SIAM , Philadelphia , 2016 .
20. , Linearization in the large of nonlinear systems and Koopman operator spectrum , Phys. D , 242 ( 2013 ), pp. 42 -- 53 .
21. , Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , Appl. Math. Sci. 97 , Springer , New York , 1994 .
22. , Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator , Chaos , 27 ( 2017 ), 103111 , https://doi.org/10.1063/1.4993854.
23. , Isostables, isochrons, and Koopman spectrum for the action--angle representation of stable fixed point dynamics , Phys. D , 261 ( 2013 ), pp. 19 -- 30 , https://doi.org/10.1016/j.physd.2013.06.004.
24. , Institut de mathématique pure et appliquée, Université catholique de Louvain ,
Louvain-la-Neuve ,Belgium , 1993 .25. , Nonlinear Dynam. , 41 ( 2005 ), pp. 309 -- 325 , https://doi.org/10.1007/s11071-005-2824-x.
26. , Analysis of fluid flows via spectral properties of the Koopman operator , Annu. Rev. Fluid Mech. , 45 ( 2013 ), pp. 357 -- 378 .
27. , Koopman Operator Spectrum and Data Analysis, preprint, arXiv, https://arxiv.org/abs/1702.07597v1 ( 2017 ). , https://arxiv.org/abs/1702.07597v1.
28. , Comparison of systems with complex behavior , Phys. D , 197 ( 2004 ), pp. 101 -- 133 .
29. R. Mohr and I. Mezić, Koopman Principle Eigenfunctions and Linearization of Diffeomorphisms, preprint, arXiv:1611.01209, (2016).
30. , Reconstructing the topology of sparsely connected dynamical networks , Phys. Rev. E (3) , 77 ( 2008 ), 026103 .
31. . Neumann, Zur Operatorenmethode in der klassischen Mechanik , Ann. of Math. , 33 ( 1932 ), pp. 587 -- 642 .
32. , Synchronization over Cartan motion groups via contraction , SIAM J. Appl. Algebra Geom. , 2 ( 2018 ), pp. 207 -- 241 .
33. , Differential Equations and Dynamical Systems , Texts Appl. Math. 7 , Springer , New York , 1996 .
34. , On the history of the isomorphism problem of dynamical systems with special regard to von Neumann's contribution , Arch. Hist. Exact Sci. , 66 ( 2012 ), pp. 71 -- 93 .
35. , Dynamic mode decomposition of numerical and experimental data , J. Fluid Mech. , 656 ( 2010 ), pp. 5 -- 28 , https://doi.org/10.1017/s0022112010001217.
36. , Relaxing conjugacy to fit modeling in dynamical systems , Phys. Rev. E (3) , 76 ( 2007 ), 026220 .
37. , A concept of homeomorphic defect for defining mostly conjugate dynamical systems , Chaos , 18 ( 2008 ), 013118 .
38. , Ordinary Differential Equations and Dynamical Systems , Grad. Stud. Math. 140 , AMS , Providence, RI , 2012 .
39. , Steady state bifurcations and exact multiplicity conditions via Carleman linearization , J. Math. Anal. Appl. , 126 ( 1987 ), pp. 143 -- 160 , https://doi.org/10.1016/0022-247X(87)90082-5.
40. , Data based identification and prediction of nonlinear and complex dynamical systems , Phys. Rep. , 644 ( 2016 ), pp. 1 -- 76 .
41. , A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition , J. Nonlinear Sci. , 25 ( 2015 ), pp. 1307 -- 1346 , https://doi.org/10.1007/s00332-015-9258-5.
42. , A kernel-based approach to data-driven Koopman spectral analysis , J. Comput. Dyn. , 2 ( 2015 ), pp. 247 -- 265 .
43. , Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , EPL , 109 ( 2015 ), 40007 , https://doi.org/10.1209/0295-5075/109/40007.
44. , Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems , Phys. D , 227 ( 2007 ), pp. 78 -- 99 .