On Matching, and Even Rectifying, Dynamical Systems through Koopman Operator Eigenfunctions

Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g., through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of “Cole--Hopf-type" transformations for dynamics.

  • 1.  S. P. Banks and  Carleman Lie series and optimal control of non-linear partial differential equations , Internat. J. Systems Sci. , 23 ( 1992 ), pp. 663 -- 675 , https://doi.org/10.1080/00207729208949241. CrossrefISIGoogle Scholar

  • 2.  E. M. Bollt and  N. Santitissadeekorn , Applied and Computational Measurable Dynamics , Math. Model. Comput. , SIAM , Philadelphia , 2013 . Google Scholar

  • 3.  E. M. Bollt and  J. D. Skufca , On comparing dynamical systems by defective conjugacy: A symbolic dynamics interpretation of commuter functions , Phys. D , 239 ( 2010 ), pp. 579 -- 590 . CrossrefISIGoogle Scholar

  • 4.  S. L. Brunton J. L. Proctor and  J. N. Kutz , Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc , Natl. Acad. Sci. USA , 113 ( 2016 ), pp. 3932 -- 3937 . CrossrefISIGoogle Scholar

  • 5.  M. Budišić R. Mohr and  I. Mezić , Applied Koopmanism , Chaos , 22 ( 2012 ), 047510 . CrossrefISIGoogle Scholar

  • 6.  T. Carleman , Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires , Acta Math. , 59 ( 1932 ), pp. 63 -- 87 , https://doi.org/10.1007/BF02546499. CrossrefGoogle Scholar

  • 7.  C. Chicone , Ordinary Differential Equations with Applications , Springer , New York , 2006 , https://doi.org/10.1007/b97645. Google Scholar

  • 8.  S. Das and  D. Giannakis , Delay-Coordinate Maps and the Spectra of Koopman Operators, preprint, arXiv, https://arxiv.org/abs/1706.08544v1 ( 2017 ). , https://arxiv.org/abs/1706.08544v1. Google Scholar

  • 9.  G. Fibich and  M. Klein , Continuations of the nonlinear Schrödinger equation beyond the singularity , Nonlinearity , 24 ( 2011 ), pp. 2003 -- 2045 , https://doi.org/10.1088/0951-7715/24/7/006. CrossrefISIGoogle Scholar

  • 10.  P. Gaspard G. Nicolis A. Provata and  S. Tasaki , Spectral signature of the pitchfork bifurcation: Liouville equation approach , Phys. Rev. E (3) , 51 ( 1995 ), 74 . CrossrefISIGoogle Scholar

  • 11.  D. Giannakis J. Slawinska and  Z. Zhao , Spatiotemporal feature extraction with data-driven Koopman operators , J. Mach. Learn. Res. Proc. , 44 ( 2015 ), pp. 103 -- 115 . Google Scholar

  • 12.  G. H. Golub and  C. F. Van Loan , Matrix Computations , Vol. 3 , Johns Hopkins University Press , Baltimore, MD , 2012 . Google Scholar

  • 13.  P. R. Halmos . von Neumann, Operator methods in classical mechanics, II , Ann. Math. (2) , 43 ( 1942 ), pp. 332 -- 350 . CrossrefGoogle Scholar

  • 14.  E. Kaiser J. N. Kutz and  S. L. Brunton , Data-Driven Discovery of Koopman Eigenfunctions for Control, preprint, arXiv, https://arxiv.org/abs/1707.01146v1 ( 2017 ). , https://arxiv.org/abs/1707.01146v1. Google Scholar

  • 15.  A. Kelley and  The , J. Differential Equations , 3 ( 1967 ), pp. 546 -- 570 . CrossrefISIGoogle Scholar

  • 16.  F. P. Kemeth S. W. Haugland F. Dietrich T. Bertalan Q. Li E. M. Bollt R. Talmon K. Krischer and  I. G. Kevrekidis , An Equal Space for Complex Data with Unknown Internal Order: Observability, Gauge Invariance and Manifold Learning, preprint, arXiv, https://arxiv.org/abs/1708.05406v1 ( 2017 ). , https://arxiv.org/abs/1708.05406v1. Google Scholar

  • 17.  S. Klus F. Nüske P. Koltai H. Wu I. Kevrekidis C. Schütte and  F. Noé , Data-Driven Model Reduction and Transfer Operator Approximation, preprint, arXiv, https://arxiv.org/abs/1703.10112v1 ( 2017 ). , https://arxiv.org/abs/1703.10112v1. Google Scholar

  • 18.  K. Kowalski and  W.-H. Steeb , Nonlinear Dynamical Systems and Carleman , World Scientific , Singapore , 1991 , http://www.ebook.de/de/product/4355844/nonlinear_dynamical_systems_and_carleman.html. , http://www.ebook.de/de/product/4355844/nonlinear_dynamical_systems_and_carleman.html. Google Scholar

  • 19.  J. N. Kutz S. L. Brunton B. W. Brunton and  J. L. Proctor , Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems , SIAM , Philadelphia , 2016 . Google Scholar

  • 20.  Y. Lan and  I. Mezić , Linearization in the large of nonlinear systems and Koopman operator spectrum , Phys. D , 242 ( 2013 ), pp. 42 -- 53 . CrossrefISIGoogle Scholar

  • 21.  A. Lasota and  M. C. Mackey , Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , Appl. Math. Sci. 97 , Springer , New York , 1994 . Google Scholar

  • 22.  Q. Li F. Dietrich E. M. Bollt and  I. G. Kevrekidis , Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator , Chaos , 27 ( 2017 ), 103111 , https://doi.org/10.1063/1.4993854. CrossrefISIGoogle Scholar

  • 23.  A. Mauroy I. Mezić and  J. Moehlis , Isostables, isochrons, and Koopman spectrum for the action--angle representation of stable fixed point dynamics , Phys. D , 261 ( 2013 ), pp. 19 -- 30 , https://doi.org/10.1016/j.physd.2013.06.004. CrossrefISIGoogle Scholar

  • 24.  J. Mawhin The Centennial Poincaré and  Lyapunov Ordinary Differential Equations , Institut de mathématique pure et appliquée, Université catholique de Louvain , Louvain-la-Neuve , Belgium , 1993 . Google Scholar

  • 25.  I. Mezić and  Spectral Properties Model Dynamical Systems Reduction , Nonlinear Dynam. , 41 ( 2005 ), pp. 309 -- 325 , https://doi.org/10.1007/s11071-005-2824-x. CrossrefISIGoogle Scholar

  • 26.  I. Mezić , Analysis of fluid flows via spectral properties of the Koopman operator , Annu. Rev. Fluid Mech. , 45 ( 2013 ), pp. 357 -- 378 . CrossrefISIGoogle Scholar

  • 27.  I. Mezic , Koopman Operator Spectrum and Data Analysis, preprint, arXiv, https://arxiv.org/abs/1702.07597v1 ( 2017 ). , https://arxiv.org/abs/1702.07597v1. Google Scholar

  • 28.  I. Mezić and  A. Banaszuk , Comparison of systems with complex behavior , Phys. D , 197 ( 2004 ), pp. 101 -- 133 . CrossrefISIGoogle Scholar

  • 29.  R. Mohr and I. Mezić, Koopman Principle Eigenfunctions and Linearization of Diffeomorphisms, preprint, arXiv:1611.01209, (2016).Google Scholar

  • 30.  D. Napoletani and  T. D. Sauer , Reconstructing the topology of sparsely connected dynamical networks , Phys. Rev. E (3) , 77 ( 2008 ), 026103 . CrossrefISIGoogle Scholar

  • 31.  J. . Neumann, Zur Operatorenmethode in der klassischen Mechanik , Ann. of Math. , 33 ( 1932 ), pp. 587 -- 642 . CrossrefGoogle Scholar

  • 32.  O. Özyeşil N. Sharon and  A. Singer , Synchronization over Cartan motion groups via contraction , SIAM J. Appl. Algebra Geom. , 2 ( 2018 ), pp. 207 -- 241 . LinkISIGoogle Scholar

  • 33.  L. Perko , Differential Equations and Dynamical Systems , Texts Appl. Math. 7 , Springer , New York , 1996 . Google Scholar

  • 34.  M. Rédei and  C. Werndl , On the history of the isomorphism problem of dynamical systems with special regard to von Neumann's contribution , Arch. Hist. Exact Sci. , 66 ( 2012 ), pp. 71 -- 93 . CrossrefISIGoogle Scholar

  • 35.  P. J. Schmid , Dynamic mode decomposition of numerical and experimental data , J. Fluid Mech. , 656 ( 2010 ), pp. 5 -- 28 , https://doi.org/10.1017/s0022112010001217. CrossrefISIGoogle Scholar

  • 36.  J. D. Skufca and  E. M. Bollt , Relaxing conjugacy to fit modeling in dynamical systems , Phys. Rev. E (3) , 76 ( 2007 ), 026220 . CrossrefISIGoogle Scholar

  • 37.  J. D. Skufca and  E. M. Bollt , A concept of homeomorphic defect for defining mostly conjugate dynamical systems , Chaos , 18 ( 2008 ), 013118 . CrossrefISIGoogle Scholar

  • 38.  G. Teschl , Ordinary Differential Equations and Dynamical Systems , Grad. Stud. Math. 140 , AMS , Providence, RI , 2012 . Google Scholar

  • 39.  C. Tsiligiannis and  G. Lyberatos , Steady state bifurcations and exact multiplicity conditions via Carleman linearization , J. Math. Anal. Appl. , 126 ( 1987 ), pp. 143 -- 160 , https://doi.org/10.1016/0022-247X(87)90082-5. CrossrefISIGoogle Scholar

  • 40.  W.-X. Wang Y.-C. Lai and  C. Grebogi , Data based identification and prediction of nonlinear and complex dynamical systems , Phys. Rep. , 644 ( 2016 ), pp. 1 -- 76 . CrossrefISIGoogle Scholar

  • 41.  M. O. Williams I. G. Kevrekidis and  C. W. Rowley , A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition , J. Nonlinear Sci. , 25 ( 2015 ), pp. 1307 -- 1346 , https://doi.org/10.1007/s00332-015-9258-5. CrossrefISIGoogle Scholar

  • 42.  M. O. Williams C. W. Rowley and  I. G. Kevrekidis , A kernel-based approach to data-driven Koopman spectral analysis , J. Comput. Dyn. , 2 ( 2015 ), pp. 247 -- 265 . Google Scholar

  • 43.  M. O. Williams C. W. Rowley I. Mezić and  I. G. Kevrekidis , Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , EPL , 109 ( 2015 ), 40007 , https://doi.org/10.1209/0295-5075/109/40007. CrossrefISIGoogle Scholar

  • 44.  C. Yao and  E. M. Bollt , Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems , Phys. D , 227 ( 2007 ), pp. 78 -- 99 . CrossrefISIGoogle Scholar