Stabilized Weighted Reduced Basis Methods for Parametrized Advection Dominated Problems with Random Inputs

In this work, we propose viable and efficient strategies for stabilized parametrized advection dominated problems, with random inputs. In particular, we investigate the combination of the wRB (weighted reduced basis) method for stochastic parametrized problems with the stabilized RB (reduced basis) method, which is the integration of classical stabilization methods (streamline/upwind Petrov--Galerkin (SUPG) in our case) in the offline--online structure of the RB method. Moreover, we introduce a reduction method that selectively enables online stabilization; this leads to a sensible reduction of computational costs, while keeping a very good accuracy with respect to high-fidelity solutions. We present numerical test cases to assess the performance of the proposed methods in steady and unsteady problems related to heat transfer phenomena.

  • 1.  I. Akhtar A. H. Nayfeh and  C. J. Ribbens , On the stability and extension of reduced-order Galerkin models in incompressible flows , Theoret. Comput. Fluid Dynam. , 23 ( 2009 ), pp. 213 -- 237 . CrossrefISIGoogle Scholar

  • 2.  S. Ali, F. Ballarin, and G. Rozza, Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations, submitted.Google Scholar

  • 3.  J. Baiges R. Codina and  S. Idelsohn , Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier--Stokes equations , Internat. J. Numer. Methods Fluids , 72 ( 2013 ), pp. 1219 -- 1243 . CrossrefISIGoogle Scholar

  • 4.  F. Ballarin E. Faggiano S. Ippolito A. Manzoni A. Quarteroni G. Rozza and  R. Scrofani , Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD--Galerkin method and a vascular shape parametrization , J. Comput. Phys. , 315 ( 2016 ), pp. 609 -- 628 . CrossrefISIGoogle Scholar

  • 5.  F. Ballarin, A. Sartori, and G. Rozza, RBniCS---Reduced Order Modelling in FEniCS, http://mathlab.sissa.it/rbnics, 2015.Google Scholar

  • 6.  M. Barrault Y. Maday N. Nguyen and  A. Patera , An `empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations , C. R. Math. Acad. Sci. Paris , 339 ( 2004 ), pp. 667 -- 672 . CrossrefISIGoogle Scholar

  • 7.  A. Brooks and  T. Hughes , Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , Comput. Methods Appl. Mech. Engrg. , 32 ( 1982 ), pp. 199 -- 259 . CrossrefISIGoogle Scholar

  • 8.  T. Chacón Rebollo E. Delgado Ávila M. Gómez Mármol F. Ballarin and  G. Rozza , On a certified Smagorinsky reduced basis turbulence model , SIAM J. Numer. Anal. , 55 ( 2017 ), pp. 3047 -- 3067 , https://doi.org/10.1137/17M1118233. LinkISIGoogle Scholar

  • 9.  P. Chen, Model Order Reduction Techniques for Uncertainty Quantification Problems, Ph.D. thesis, École Polytechnique Fédérale de Lausanne EPFL, https://infoscience.epfl.ch/record/198689/files/EPFL_TH6118.pdf, 2014.Google Scholar

  • 10.  P. Chen A. Quarteroni and  G. Rozza , A weighted reduced basis method for elliptic partial differential equations with random input data , SIAM J. Numer. Anal. , 51 ( 2013 ), pp. 3163 -- 3185 , https://doi.org/10.1137/130905253. LinkISIGoogle Scholar

  • 11.  P. Chen A. Quarteroni and  G. Rozza , A weighted empirical interpolation method: A priori convergence analysis and applications , ESAIM Math. Model. Numer. Anal. , 48 ( 2014 ), pp. 943 -- 953 . CrossrefISIGoogle Scholar

  • 12.  P. Chen A. Quarteroni and  G. Rozza , Reduced basis methods for uncertainty quantification , SIAM/ASA J. Uncertain. Quantif. , 5 ( 2017 ), pp. 813 -- 869 , https://doi.org/10.1137/151004550. LinkISIGoogle Scholar

  • 13.  L. Dedè , Reduced basis method for parametrized elliptic advection-reaction problems , J. Comput. Math. , 28 ( 2010 ), pp. 122 -- 148 . CrossrefISIGoogle Scholar

  • 14.  R. Durrett, Probability Theory and Examples, Cambridge University Press, Cambridge, UK, 2010.Google Scholar

  • 15.  J. Eftang M. Grepl and  A. Patera , A posteriori error bounds for the empirical interpolation method , C. R. Math. Acad. Sci. Paris , 348 ( 2010 ), pp. 575 -- 579 . CrossrefISIGoogle Scholar

  • 16.  F. Gelsomino and  G. Rozza , Comparison and combination of reduced-order modelling techniques in 3D parametrized heat transfer problems , Math. Comput. Model. Dyn. Syst. , 17 ( 2011 ), pp. 371 -- 394 . CrossrefISIGoogle Scholar

  • 17.  S. Giere T. Iliescu V. John and  D. Wells , SUPG reduced order models for convection-dominated convection--diffusion--reaction equations , Comput. Methods Appl. Mech. Engrg. , 289 ( 2015 ), pp. 454 -- 474 . CrossrefISIGoogle Scholar

  • 18.  M. Grepl and A. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM M2AN, 39 (2005), pp. 157--181.Google Scholar

  • 19.  B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM M2AN, 42 (2008), pp. 277--302.Google Scholar

  • 20.  J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, Berlin, 2016.Google Scholar

  • 21.  T. Hughes and  A. Brooks , A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows, AMD 34, American Society of Mechanical Engineers (ASME) , New York , 1979 , pp. 19 -- 35 . Google Scholar

  • 22.  D. Huynh G. Rozza S. Sen and  A. Patera , A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants , C. R. Math. Acad. Sci. Paris , 345 ( 2007 ), pp. 473 -- 478 . CrossrefISIGoogle Scholar

  • 23.  T. Iliescu, H. Liu, and X. Xie, Regularized Reduced Order Models for a Stochastic Burgers Equation, preprint, https://arxiv.org/abs/1701.01155, 2017.Google Scholar

  • 24.  T. Iliescu and  Z. Wang , Variational multiscale proper orthogonal decomposition: Navier-Stokes equations , Numer. Methods Partial Differential Equations , 30 ( 2014 ), pp. 641 -- 663 . CrossrefISIGoogle Scholar

  • 25.  F. Incropera and D. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 1990.Google Scholar

  • 26.  V. John and  J. Novo , Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations , SIAM J. Numer. Anal. , 49 ( 2011 ), pp. 1149 -- 1176 , https://doi.org/10.1137/100789002. LinkISIGoogle Scholar

  • 27.  C. Johnson and  U. Nävert , An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980), North-Holland Math. Stud. 47, North-Holland , Amsterdam , 1981 , pp. 99 -- 116 . Google Scholar

  • 28.  C. Johnson U. Nävert and  J. Pitkäranta , Finite element methods for linear hyperbolic problems , Comput. Methods Appl. Mech. Engrg. , 45 ( 1984 ), pp. 285 -- 312 . CrossrefISIGoogle Scholar

  • 29.  T. Lassila and  G. Rozza , Parametric free-form shape design with PDE models and reduced basis method , Comput. Methods Appl. Mech. Engrg. , 199 ( 2010 ), pp. 1583 -- 1592 . CrossrefISIGoogle Scholar

  • 30.  A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer-Verlag, Berlin, 2012.Google Scholar

  • 31.  S. Lorenzi A. Cammi L. Luzzi and  G. Rozza , POD-Galerkin method for finite volume approximation of Navier--Stokes and RANS equations , Comput. Methods Appl. Mech. Engrg. , 311 ( 2016 ), pp. 151 -- 179 . CrossrefISIGoogle Scholar

  • 32.  Y. Maday A. Manzoni and  A. Quarteroni , An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems , C. R. Math. Acad. Sci. Paris , 354 ( 2016 ), pp. 1188 -- 1194 . CrossrefISIGoogle Scholar

  • 33.  A. Manzoni A. Quarteroni and  G. Rozza , Model reduction techniques for fast blood flow simulation in parametrized geometries , Int. J. Numer. Methods Biomed. Engrg. , 28 ( 2012 ), pp. 604 -- 625 . CrossrefISIGoogle Scholar

  • 34.  N. C. Nguyen G. Rozza D. B. P. Huynh and  A. T. Patera , Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs: Application to real-time Bayesian parameter estimation, in Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley , Chichester , 2011 , pp. 151 -- 177 . Google Scholar

  • 35.  N.-C. Nguyen G. Rozza and  A. T. Patera , Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers' equation , Calcolo , 46 ( 2009 ), pp. 157 -- 185 . CrossrefISIGoogle Scholar

  • 36.  P. Pacciarini, Stabilized Reduced Basis Method for Parametrized Advection-Diffusion PDEs, Master's thesis, Università degli Studi di Pavia, Pavia, Italy, 2012.Google Scholar

  • 37.  P. Pacciarini and  G. Rozza , Stabilized reduced basis method for parametrized advection--diffusion PDEs , Comput. Methods Appl. Mech. Engrg. , 274 ( 2014 ), pp. 1 -- 18 . CrossrefISIGoogle Scholar

  • 38.  P. Pacciarini and  G. Rozza , Stabilized reduced basis method for parametrized scalar advection-diffusion problems at higher Péclet number: Roles of the boundary layers and inner fronts, in Proceedings of the 11th World Congress on Computational Mechanics and 5th European Congress on Computational Mechanics and 6th European Congress on Computational Fluid Dynamics, Barcelona , Spain , 2014 , pp. 5614 -- 5624 . Google Scholar

  • 39.  P. Pacciarini and  G. Rozza , Reduced basis approximation of parametrized advection-diffusion PDEs with high Péclet number, in Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes Comput. Sci. Eng. 103, Springer , Cham , 2015 , pp. 419 -- 426 . Google Scholar

  • 40.  A. Quarteroni G. Rozza and  A. Manzoni , Certified reduced basis approximation for parametrized partial differential equations and applications , J. Math. Ind. , 1 ( 2011 ), 3 . CrossrefGoogle Scholar

  • 41.  A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics, Texts Appl. Math. 37, Springer-Verlag, Berlin, 2007.Google Scholar

  • 42.  A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1994.Google Scholar

  • 43.  G. Rozza D. Huynh and  A. Patera , Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics , Arch. Comput. Methods Eng. , 3 ( 2008 ), pp. 229 -- 275 . CrossrefISIGoogle Scholar

  • 44.  G. Rozza, C. N. Nguyen, A. T. Patera, and S. Deparis, Reduced basis methods and a posteriori error estimators for heat transfer problems, in Proceedings of the ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer, San Francisco, CA, 2009, pp. 753--762.Google Scholar

  • 45.  C. Spannring, Weighted Reduced Basis Methods for Parabolic PDEs with Random Input Data, Ph.D. thesis, Graduate School CE, Technische Universität Darmstadt, Darmstadt, Germany, 2018.Google Scholar

  • 46.  C. Spannring, S. Ullmann, and J. Lang, A weighted reduced basis method for parabolic PDEs with random data, in Recent Advances in Computational Engineering (ICCE 2017), Lecture Notes in Comput. Sci. Eng. 124, M. Schäfer et al., eds., Springer, Cham, pp. 145--161, https://doi.org/10.1007/978-3-319-93891-2_9.Google Scholar

  • 47.  G. Stabile S. Hijazi A. Mola S. Lorenzi and  G. Rozza , POD-Galerkin reduced order methods for CFD using finite volume discretisation: Vortex shedding around a circular cylinder , Commun. Appl. Ind. Math. , 8 ( 2017 ), pp. 210 -- 236 . CrossrefISIGoogle Scholar

  • 48.  L. Venturi, Weighted Reduced Basis Methods for Parametrized PDEs in Uncertainty Quantification Problems, Master's thesis, Università degli Studi di Trieste/SISSA, Trieste, Italy, 2016.Google Scholar

  • 49.  L. Venturi, F. Ballarin, and G. Rozza, A weighted POD method for elliptic PDEs with random inputs, J. Sci. Comput., to appear, https://doi.org/10.1007/s10915-018-0830-7.Google Scholar