Computational Methods in Science and Engineering

A Low-Rank Projector-Splitting Integrator for the Vlasov--Poisson Equation

Abstract

Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but is extremely expensive from a computational point of view. In the present paper, we propose a dynamical low-rank approximation to the Vlasov--Poisson equation, with time integration by a particular splitting method. This approximation is derived by constraining the dynamics to a manifold of low-rank functions via a tangent space projection and by splitting this projection into the subprojections from which it is built. This reduces a time step for the six- (or four-) dimensional Vlasov--Poisson equation to solving two systems of three- (or two-) dimensional advection equations over the time step, once in the position variables and once in the velocity variables, where the size of each system of advection equations is equal to the chosen rank. By a hierarchical dynamical low-rank approximation, a time step for the Vlasov--Poisson equation can be further reduced to a set of six (or four) systems of one-dimensional advection equations, where the size of each system of advection equations is still equal to the rank. The resulting systems of advection equations can then be solved by standard techniques such as semi-Lagrangian or spectral methods. Numerical simulations in two and four dimensions for linear Landau damping, for a two-stream instability, and for a plasma echo problem highlight the favorable behavior of this numerical method and show that the proposed algorithm is able to drastically reduce the required computational effort.

Keywords

  1. dynamical low-rank approximation
  2. projector-splitting integrator
  3. Vlasov--Poisson equation

MSC codes

  1. 82D10
  2. 15A69

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Arnold and T. Jahnke, On the approximation of high-dimensional differential equations in the hierarchical Tucker format, BIT Numer. Math., 54 (2014), pp. 305--341.
2.
J. Bigot, V. Grandgirard, G. Latu, C. Passeron, F. Rozar, and O. Thomine, Scaling GYSELA code beyond 32K-cores on Blue Gene/Q, in Numerical Methods and Algorithms for High Performance Computing, ESAIM Proc. 43, EDP Sciences, Les Ulis, France, 2013, pp. 117--135.
3.
C. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330--351.
4.
D. Conte and C. Lubich, An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 759--780, https://doi.org/10.1051/m2an/2010018.
5.
N. Crouseilles, L. Einkemmer, and E. Faou, Hamiltonian splitting for the Vlasov--Maxwell equations, J. Comput. Phys., 283 (2015), pp. 224--240.
6.
N. Crouseilles, L. Einkemmer, and E. Faou, An asymptotic preserving scheme for the relativistic Vlasov--Maxwell equations in the classical limit, Comput. Phys. Commun., 209 (2016), pp. 13--26.
7.
N. Crouseilles, L. Einkemmer, and M. Prugger, An exponential integrator for the drift-kinetic model, Comput. Phys. Commun., 224 (2018), pp. 144--153.
8.
N. Crouseilles, G. Latu, and E. Sonnendrücker, A parallel Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), pp. 1429--1446.
9.
N. Crouseilles, M. Mehrenberger, and F. Vecil, Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson, in Numerical Modeling of Fusion, ESAIM Proc. 32, EDP Sciences, Les Ulis, France, 2011, pp. 211--230.
10.
E. Deriaz and S. Peirani, Six-dimensional adaptive simulation of the Vlasov equations using a hierarchical basis, Multiscale Model. Simul., 16 (2018), pp. 583--614, https://doi.org/10.1137/16M1108649.
11.
V. Ehrlacher and D. Lombardi, A dynamical adaptive tensor method for the Vlasov-Poisson system, J. Comput. Phys., 339 (2017), pp. 285--306.
12.
L. Einkemmer, A mixed precision semi-Lagrangian algorithm and its performance on accelerators, in Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS), 2016, pp. 74--80.
13.
L. Einkemmer, High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code, Comput. Phys. Commun., 202 (2016), pp. 326--336.
14.
L. Einkemmer, A study on conserving invariants of the Vlasov equation in semi-Lagrangian computer simulations, J. Plasma Phys., 83 (2017), 705830203.
15.
L. Einkemmer, A Comparison of Semi-Lagrangian Discontinuous Galerkin and Spline Based Vlasov Solvers in Four Dimensions, preprint, https://arxiv.org/abs/1803.02143, 2018.
16.
L. Einkemmer and A. Ostermann, A strategy to suppress recurrence in grid-based Vlasov solvers, Eur. Phys. J. D, 68 (2014), 197.
17.
L. Einkemmer and A. Ostermann, An almost symmetric Strang splitting scheme for nonlinear evolution equations, Comput. Math. Appl., 67 (2014), pp. 2144--2157.
18.
L. Einkemmer and A. Ostermann, An almost symmetric Strang splitting scheme for the construction of high order composition methods, Comput. Appl. Math., 271 (2014), pp. 307--318.
19.
E. Fijalkow, A numerical solution to the Vlasov equation, Comput. Phys. Commun., 116 (1999), pp. 319--328.
20.
F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150 (2003), pp. 247--266.
21.
F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166--187.
22.
R. Gould, T. O'Neil, and J. Malmberg, Plasma wave echo, Phys. Rev. Lett., 19 (1967), pp. 219--222.
23.
V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, G. Latu, M. Mehrenberger, C. Norscini, C. Passeron, F. Rozar, Y. Sarazin, E. Sonnendrücker, A. Strugarek, and D. Zarzoso, A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., 207 (2016), pp. 35--68.
24.
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, and L. Villard, A drift-kinetic semi-Lagrangian $4$D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), pp. 395--423.
25.
W. Guo and Y. Cheng, A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations, SIAM J. Sci. Comput., 38 (2016), pp. A3381--A3409, https://doi.org/10.1137/16M1060017.
26.
J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Unifying time evolution and optimization with matrix product states, Phys. Rev. B, 94 (2016), 165116.
27.
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209--286.
28.
Y. Hou, Z. Ma, and M. Yu, The plasma wave echo revisited, Phys. Plasmas, 18 (2011), 012108.
29.
T. Jahnke and W. Huisinga, A dynamical low-rank approach to the chemical master equation, Bull. Math. Biol., 70 (2008), pp. 2283--2302.
30.
E. Kieri, C. Lubich, and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal., 54 (2016), pp. 1020--1038, https://doi.org/10.1137/15M1026791.
31.
A. Klimas and W. Farrell, A splitting algorithm for Vlasov simulation with filamentation filtration, J. Comput. Phys., 110 (1994), pp. 150--163.
32.
O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434--454, https://doi.org/10.1137/050639703.
33.
O. Koch and C. Lubich, Dynamical tensor approximation, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2360--2375, https://doi.org/10.1137/09076578X.
34.
K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. B613--B632, https://doi.org/10.1137/140971270.
35.
K. Kormann and E. Sonnendrücker, Sparse grids for the Vlasov--Poisson equation, in Sparse Grids and Applications -- Stuttgart 2014, Springer, Cham, 2016, pp. 163--190.
36.
G. Latu, N. Crouseilles, V. Grandgirard, and E. Sonnendrücker, Gyrokinetic semi-Lagrangian parallel simulation using a hybrid OpenMP/MPI programming, in 14th European PVM/MPI User's Group Meeting, 2007, pp. 356--364.
37.
C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, Zürich, Switzerland, 2008.
38.
C. Lubich, Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express. AMRX, 2015 (2015), pp. 311--328.
39.
C. Lubich and I. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT Numer. Math., 54 (2014), pp. 171--188.
40.
C. Lubich, I. V. Oseledets, and B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal., 53 (2015), pp. 917--941, https://doi.org/10.1137/140976546.
41.
C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 470--494, https://doi.org/10.1137/120885723.
42.
C. Lubich, B. Vandereycken, and H. Walach, Time integration of rank-constrained Tucker tensors, SIAM J. Numer. Anal., 56 (2018), pp. 1273--1290, https://doi.org/10.1137/17M1146889.
43.
M. Mehrenberger, C. Steiner, L. Marradi, N. Crouseilles, E. Sonnendrücker, and B. Afeyan, Vlasov on GPU (VOG project), in Numerical Methods and Algorithms for High Performance Computing, ESAIM Proc. 43, EDP Sciences, Les Ulis, France, 2013, pp. 37--58.
44.
H. Mena, A. Ostermann, L. Pfurtscheller, and C. Piazzola, Numerical low-rank approximation of matrix differential equations, J. Comput. Appl. Math., 340 (2018), pp. 602--614.
45.
H.-D. Meyer, F. Gatti, and G. A. Worth, Multidimensional Quantum Dynamics, John Wiley & Sons, Weinheim, Germany, 2009.
46.
H.-D. Meyer, U. Manthe, and L. S. Cederbaum, The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett., 165 (1990), pp. 73--78.
47.
P. J. Morrison, Structure and structure-preserving algorithms for plasma physics, Phys. Plasmas, 24 (2017), 055502, https://doi.org/10.1063/1.4982054.
48.
E. Musharbash and F. Nobile, Dual dynamically orthogonal approximation of incompressible Navier--Stokes equations with random boundary conditions, J. Comput. Phys., 354 (2018), pp. 135--162.
49.
A. Nonnenmacher and C. Lubich, Dynamical low-rank approximation: Applications and numerical experiments, Math. Comput. Simulation, 79 (2008), pp. 1346--1357.
50.
J. Qiu and C. Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov--Poisson system, J. Comput. Phys., 230 (2011), pp. 8386--8409.
51.
J. Rossmanith and D. Seal, A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov--Poisson equations, J. Comput. Phys., 230 (2011), pp. 6203--6232.
52.
F. Rozar, G. Latu, and J. Roman, Achieving memory scalability in the GYSELA code to fit exascale constraints, in Parallel Processing and Applied Mathematics, Springer, Berlin, Heidelberg, 2013, pp. 185--195.
53.
N. J. Sircombe and T. D. Arber, VALIS: A split-conservative scheme for the relativistic 2D Vlasov--Maxwell system, J. Comput. Phys., 228 (2009), pp. 4773--4788.
54.
E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201--220.
55.
J. P. Verboncoeur, Particle simulation of plasmas: Review and advances, Plasma Phys. Control. Fusion, 47 (2005), pp. A231--A260.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1330 - B1360
ISSN (online): 1095-7197

History

Submitted: 4 January 2018
Accepted: 14 August 2018
Published online: 11 October 2018

Keywords

  1. dynamical low-rank approximation
  2. projector-splitting integrator
  3. Vlasov--Poisson equation

MSC codes

  1. 82D10
  2. 15A69

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media