The Target-Matrix Optimization Paradigm for High-Order Meshes
Abstract
We describe a framework for controlling and improving the quality of high-order finite element meshes based on extensions of the Target-Matrix Optimization Paradigm (TMOP) of [P. Knupp, Eng. Comput., 28 (2012), pp. 419--429]. This approach allows high-order applications to have a very precise control over local mesh quality, while still improving the mesh globally. We address the adaption of various TMOP components to the settings of general isoparametric element mappings, including the mesh quality metric in 2D and 3D, the selection of sample points and the solution of the resulting mesh optimization problem. We also investigate additional practical concerns, such as tangential relaxation and restricting the deviation from the original mesh. The benefits of the new high-order TMOP algorithms are illustrated on a number of test problems and examples from a high-order arbitrary Lagrangian--Eulerian (ALE) application [BLAST: High-order curvilinear finite elements for shock hydrodynamics, http://www.llnl.gov/CASC/blast]. Our implementation is freely available in an open-source library form [MFEM: Modular parallel finite element methods library, http://mfem.org].
1. , High-order methods and mesh adaptation for Euler equations , Internat. J. Numer. Methods Fluids , 56 ( 2008 ), pp. 1069 -- 1076 .
2. , High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation , J. Comput. Phys. , 334 ( 2017 ), pp. 102 -- 124 .
3. , Monotonicity in high-order curvilinear finite element arbitrary Lagrangian--Eulerian remap , Internat. J. Numer. Methods Fluids , 77 ( 2015 ), pp. 249 -- 273 .
4. , High-order multi-material ALE hydrodynamics , SIAM J. Sci. Comput. , 40 ( 2018 ), pp. B32 -- B58 , https://doi.org/10.1137/17M1116453.
5. , Convexity conditions and existence theorems in nonlinear elasticity , Arch. Rational Mech. Anal. , 63 ( 1976 ), pp. 337 -- 403 .
6.
BLAST : High-order curvilinear finite elements for shock hydrodynamics, http://www.llnl.gov/CASC/blast.7. , High order accurate direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes , Comput. & Fluids , 136 ( 2016 ), pp. 48 -- 66 .
8. , Adaptive zoning for singular problems in two-dimensions , J. Comput. Phys. , 46 ( 1982 ), pp. 342 -- 368 .
9. , Efficient nonlinear solvers for nodal high-order finite elements in \textup3D , J. Sci. Comput. , 45 ( 2010 ), pp. 48 -- 63 .
10.
CEED : Center for Efficient Exascale Discretizations in the U.S. Department of Energy's Exascale Computing Project, http://ceed.exascaleproject.org.11. J. Cerveny, V. Dobrev, and T. Kolev, Non-conforming mesh refinement for high-order finite elements, 2018, submitted.
12. L. Demkowicz, Computing with hp-Adaptive Finite Elements. Volume I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL, 2006.
13. M. Deville, P. Fischer, and E. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, UK, 2002.
14. , High-order curvilinear finite element methods for Lagrangian hydrodynamics , SIAM J. Sci. Comput. , 34 ( 2012 ), pp. B606 -- B641 , https://doi.org/10.1137/120864672.
15. V. A. Dobrev, P. Knupp, T. V. Kolev, and V. Z. Tomov, Towards simulation-driven optimization of high-order meshes by the target-matrix optimization paradigm, 2018, submitted.
16. , Adaptive grid generation from harmonic maps on Riemannian manifolds , J. Comput. Phys. , 95 ( 1991 ), pp. 450 -- 476 .
17. , Variational method for untangling and optimization of spatial meshes , J. Comput. Appl. Math. , 269 ( 2014 ), pp. 24 -- 41 .
18. , and thermodynamically consistent formulation of the nonlinear elasticity equations , Comput. Math. Math. Phys. , 50 ( 2010 ), pp. 1561 -- 1587 .
19. A. Gargallo-Peiro, X. Roca, J. Peraire, and J. Serate, Defining quality measures for validation of high-order tetrahedral meshes, Proceedings of the 22nd International Meshing Roundtable, 22 (2014), pp. 109--126.
20. , Entropy-viscosity method for the single material Euler equations in Lagrangian frame , Comput. Methods Appl. Mech. Engrg. , 300 ( 2016 ), pp. 402 -- 426 .
21. , Geometrical validity of curvilinear finite elements , J. Comput. Phys. , 233 ( 2013 ), pp. 359 -- 372 .
22. , Algebraic mesh quality metrics , SIAM J. Sci. Comput. , 23 ( 2001 ), pp. 193 -- 218 , https://doi.org/10.1137/S1064827500371499.
23. P. Knupp, Local 2D Metrics for Mesh Optimization in the Target-Matrix Paradigm, Tech. Rep. SAND2006-2730J, Sandia National Laboratories, 2006.
24. , Introducing the target-matrix paradigm for mesh optimization by node movement , Eng. Comput. , 28 ( 2012 ), pp. 419 -- 429 .
25. P. Knupp, N. Voshell, and J. Kraftcheck, Quadratic Triangle Mesh Untangling and Optimization via the Target-Matrix Paradigm, Tech. Rep. SAND2011-8783P, Sandia National Laboratories, 2009.
26. , Quadratic element mesh untangling and shape optimization, CSRI Summer Proceedings , SAND 2010-8783 P, (2010), pp. 141 -- 151 .
27. , Convergence properties of the Nelder--Mead simplex method in low dimensions , SIAM J. Optim. , 9 ( 1998 ), pp. 112 -- 147 , https://doi.org/10.1137/S1052623496303470.
28. , A priori mesh quality metric error analysis applied to a high-order finite element method , J. Comput. Phys. , 230 ( 2011 ), pp. 5564 -- 5586 .
29. Q. Lu, M. Shephard, S. Tendulkar, and M. Beall, Parallel curved mesh adaptation for large scale high-order finite element simulations, Proceedings of the 21st International Meshing Roundtable, 21 (2013), pp. 419--436.
30. , Moving curved mesh adaptation for higher-order finite element simulations , Eng. Comput. , 27 ( 2011 ), pp. 41 -- 50 .
31.
MFEM : Modular parallel finite element methods library, http://mfem.org.32. , A simplex method for function minimization , Comput. J. , 7 ( 1965 ), pp. 308 -- 313 .
33. P. Persson and J. Peraire, Curved mesh generation and mesh refinement using Lagrangian solid mechanics, https://popersson.github.io/pub/persson09curved.pdf.
34. , Distortion measures for quadrilaterals with curved boundaries , Finite Elem. Anal. Des. , 4 ( 1988 ), pp. 115 -- 131 .
35. , High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3d cad representation , Comput. Aided Des. , 72 ( 2016 ), pp. 52 -- 64 .
36. , Curved boundary layer meshing for adaptive viscous flow simulations , Finite Elem. Anal. Des. , 46 ( 2010 ), pp. 132 -- 139 .
37. P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods, Chapman Hall/CRC, Boca Raton, FL, 2002.
38. , Variational grid generation , Numer. Methods Partial Differential Equations , 2 ( 1986 ), pp. 71 -- 96 .
39. , Curvilinear mesh generation using a variational framework , Comput. Aided Des. , 103 ( 2018 ), pp. 73 -- 91 .
40. M. Yano, J. Modisette, and D. Darmofal, The importance of mesh adaptation for high-order discretizations of aerodynamic flows, https://core.ac.uk/download/pdf/78062151.pdf.