Computational Methods in Science and Engineering

The Target-Matrix Optimization Paradigm for High-Order Meshes

We describe a framework for controlling and improving the quality of high-order finite element meshes based on extensions of the Target-Matrix Optimization Paradigm (TMOP) of [P. Knupp, Eng. Comput., 28 (2012), pp. 419--429]. This approach allows high-order applications to have a very precise control over local mesh quality, while still improving the mesh globally. We address the adaption of various TMOP components to the settings of general isoparametric element mappings, including the mesh quality metric in 2D and 3D, the selection of sample points and the solution of the resulting mesh optimization problem. We also investigate additional practical concerns, such as tangential relaxation and restricting the deviation from the original mesh. The benefits of the new high-order TMOP algorithms are illustrated on a number of test problems and examples from a high-order arbitrary Lagrangian--Eulerian (ALE) application [BLAST: High-order curvilinear finite elements for shock hydrodynamics, http://www.llnl.gov/CASC/blast]. Our implementation is freely available in an open-source library form [MFEM: Modular parallel finite element methods library, http://mfem.org].

  • 1.  F. Alauzet , High-order methods and mesh adaptation for Euler equations , Internat. J. Numer. Methods Fluids , 56 ( 2008 ), pp. 1069 -- 1076 . CrossrefISIGoogle Scholar

  • 2.  R. W. Anderson V. A. Dobrev T. V. Kolev D. Kuzmin M. Q. de Luna R. N. Rieben and  V. Z. Tomov , High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation , J. Comput. Phys. , 334 ( 2017 ), pp. 102 -- 124 . CrossrefISIGoogle Scholar

  • 3.  R. W. Anderson V. A. Dobrev T. V. Kolev and  R. N. Rieben , Monotonicity in high-order curvilinear finite element arbitrary Lagrangian--Eulerian remap , Internat. J. Numer. Methods Fluids , 77 ( 2015 ), pp. 249 -- 273 . CrossrefISIGoogle Scholar

  • 4.  R. W. Anderson V. A. Dobrev T. V. Kolev R. N. Rieben and  V. Z. Tomov , High-order multi-material ALE hydrodynamics , SIAM J. Sci. Comput. , 40 ( 2018 ), pp. B32 -- B58 , https://doi.org/10.1137/17M1116453. LinkISIGoogle Scholar

  • 5.  J. M. Ball , Convexity conditions and existence theorems in nonlinear elasticity , Arch. Rational Mech. Anal. , 63 ( 1976 ), pp. 337 -- 403 . CrossrefISIGoogle Scholar

  • 6.  BLAST : High-order curvilinear finite elements for shock hydrodynamics, http://www.llnl.gov/CASC/blast. Google Scholar

  • 7.  W. Boscheri and  M. Dumbser , High order accurate direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes , Comput. & Fluids , 136 ( 2016 ), pp. 48 -- 66 . CrossrefISIGoogle Scholar

  • 8.  J. Brackbill and  J. Saltzman , Adaptive zoning for singular problems in two-dimensions , J. Comput. Phys. , 46 ( 1982 ), pp. 342 -- 368 . CrossrefISIGoogle Scholar

  • 9.  J. Brown , Efficient nonlinear solvers for nodal high-order finite elements in \textup3D , J. Sci. Comput. , 45 ( 2010 ), pp. 48 -- 63 . CrossrefISIGoogle Scholar

  • 10.  CEED : Center for Efficient Exascale Discretizations in the U.S. Department of Energy's Exascale Computing Project, http://ceed.exascaleproject.org. Google Scholar

  • 11.  J. Cerveny, V. Dobrev, and T. Kolev, Non-conforming mesh refinement for high-order finite elements, 2018, submitted. Google Scholar

  • 12.  L. Demkowicz, Computing with hp-Adaptive Finite Elements. Volume I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL, 2006. Google Scholar

  • 13.  M. Deville, P. Fischer, and E. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, UK, 2002. Google Scholar

  • 14.  V. Dobrev T. Kolev and  R. Rieben , High-order curvilinear finite element methods for Lagrangian hydrodynamics , SIAM J. Sci. Comput. , 34 ( 2012 ), pp. B606 -- B641 , https://doi.org/10.1137/120864672. LinkISIGoogle Scholar

  • 15.  V. A. Dobrev, P. Knupp, T. V. Kolev, and V. Z. Tomov, Towards simulation-driven optimization of high-order meshes by the target-matrix optimization paradigm, 2018, submitted. Google Scholar

  • 16.  A. Dvinsky , Adaptive grid generation from harmonic maps on Riemannian manifolds , J. Comput. Phys. , 95 ( 1991 ), pp. 450 -- 476 . CrossrefISIGoogle Scholar

  • 17.  V. Garanzha L. Kudryavtseva and  S. Utyuzhnikov , Variational method for untangling and optimization of spatial meshes , J. Comput. Appl. Math. , 269 ( 2014 ), pp. 24 -- 41 . CrossrefISIGoogle Scholar

  • 18.  V. A. Garanzha and  Polyconvex , and thermodynamically consistent formulation of the nonlinear elasticity equations , Comput. Math. Math. Phys. , 50 ( 2010 ), pp. 1561 -- 1587 . CrossrefISIGoogle Scholar

  • 19.  A. Gargallo-Peiro, X. Roca, J. Peraire, and J. Serate, Defining quality measures for validation of high-order tetrahedral meshes, Proceedings of the 22nd International Meshing Roundtable, 22 (2014), pp. 109--126. Google Scholar

  • 20.  J.-L. Guermond B. Popov and  V. Z. Tomov , Entropy-viscosity method for the single material Euler equations in Lagrangian frame , Comput. Methods Appl. Mech. Engrg. , 300 ( 2016 ), pp. 402 -- 426 . CrossrefISIGoogle Scholar

  • 21.  A. Johnen J. Remacle and  C. Geuzaine , Geometrical validity of curvilinear finite elements , J. Comput. Phys. , 233 ( 2013 ), pp. 359 -- 372 . CrossrefISIGoogle Scholar

  • 22.  P. M. Knupp , Algebraic mesh quality metrics , SIAM J. Sci. Comput. , 23 ( 2001 ), pp. 193 -- 218 , https://doi.org/10.1137/S1064827500371499. LinkISIGoogle Scholar

  • 23.  P. Knupp, Local 2D Metrics for Mesh Optimization in the Target-Matrix Paradigm, Tech. Rep. SAND2006-2730J, Sandia National Laboratories, 2006. Google Scholar

  • 24.  P. Knupp , Introducing the target-matrix paradigm for mesh optimization by node movement , Eng. Comput. , 28 ( 2012 ), pp. 419 -- 429 . CrossrefISIGoogle Scholar

  • 25.  P. Knupp, N. Voshell, and J. Kraftcheck, Quadratic Triangle Mesh Untangling and Optimization via the Target-Matrix Paradigm, Tech. Rep. SAND2011-8783P, Sandia National Laboratories, 2009. Google Scholar

  • 26.  P. Knupp N. Voshell and  J. Kraftcheck , Quadratic element mesh untangling and shape optimization, CSRI Summer Proceedings , SAND 2010-8783 P, (2010), pp. 141 -- 151 . Google Scholar

  • 27.  J. C. Lagarias J. A. Reeds M. H. Wright and  P. E. Wright , Convergence properties of the Nelder--Mead simplex method in low dimensions , SIAM J. Optim. , 9 ( 1998 ), pp. 112 -- 147 , https://doi.org/10.1137/S1052623496303470. LinkISIGoogle Scholar

  • 28.  W. Lowrie V. Lukin and  U. Shumlak , A priori mesh quality metric error analysis applied to a high-order finite element method , J. Comput. Phys. , 230 ( 2011 ), pp. 5564 -- 5586 . CrossrefISIGoogle Scholar

  • 29.  Q. Lu, M. Shephard, S. Tendulkar, and M. Beall, Parallel curved mesh adaptation for large scale high-order finite element simulations, Proceedings of the 21st International Meshing Roundtable, 21 (2013), pp. 419--436. Google Scholar

  • 30.  X.-J. Luo M. Shephard L.-Q. Lee L. Ge and  C. Ng , Moving curved mesh adaptation for higher-order finite element simulations , Eng. Comput. , 27 ( 2011 ), pp. 41 -- 50 . CrossrefISIGoogle Scholar

  • 31.  MFEM : Modular parallel finite element methods library, http://mfem.org. Google Scholar

  • 32.  J. A. Nelder and  R. Mead , A simplex method for function minimization , Comput. J. , 7 ( 1965 ), pp. 308 -- 313 . CrossrefISIGoogle Scholar

  • 33.  P. Persson and J. Peraire, Curved mesh generation and mesh refinement using Lagrangian solid mechanics, https://popersson.github.io/pub/persson09curved.pdf. Google Scholar

  • 34.  J. Robinson , Distortion measures for quadrilaterals with curved boundaries , Finite Elem. Anal. Des. , 4 ( 1988 ), pp. 115 -- 131 . CrossrefGoogle Scholar

  • 35.  E. Ruiz-Gironés X. Roca and  J. Sarrate , High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3d cad representation , Comput. Aided Des. , 72 ( 2016 ), pp. 52 -- 64 . CrossrefISIGoogle Scholar

  • 36.  O. Sahni X. Luo K. Jansen and  M. Shephard , Curved boundary layer meshing for adaptive viscous flow simulations , Finite Elem. Anal. Des. , 46 ( 2010 ), pp. 132 -- 139 . CrossrefISIGoogle Scholar

  • 37.  P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods, Chapman Hall/CRC, Boca Raton, FL, 2002. Google Scholar

  • 38.  S. Steinberg and  P. Roache , Variational grid generation , Numer. Methods Partial Differential Equations , 2 ( 1986 ), pp. 71 -- 96 . CrossrefGoogle Scholar

  • 39.  M. Turner J. Peiró and  D. Moxey , Curvilinear mesh generation using a variational framework , Comput. Aided Des. , 103 ( 2018 ), pp. 73 -- 91 . CrossrefISIGoogle Scholar

  • 40.  M. Yano, J. Modisette, and D. Darmofal, The importance of mesh adaptation for high-order discretizations of aerodynamic flows, https://core.ac.uk/download/pdf/78062151.pdf. Google Scholar