Abstract

We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyze an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is nonintrusive and easy to implement in practice. It also features the key theoretical advantage of robust spectral bounds, which lead to convergence rates that are independent of the number of time-steps, final time, and spatial mesh size. Finally, it has a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties.

Keywords

  1. parabolic partial differential equations
  2. time-parallel methods
  3. analysis of iterative methods and preconditioners
  4. inf-sup stability
  5. parallel complexity
  6. weak and strong scaling

MSC codes

  1. 65M22
  2. 65F10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Andreev, Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations, SIAM J. Sci. Comput., 38 (2016), pp. A216--A242, https://doi.org/10.1137/140998639.
2.
I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322--333.
3.
G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, 2005, pp. 425--432.
4.
G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE's with application to the pricing of an American put, in Recent Developments in Domain Decomposition Methods (Zürich, 2001), Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin, 2002, pp. 189--202.
5.
M. A. Botchev and H. A. van der Vorst, A parallel nearly implicit time-stepping scheme, J. Comput. Appl. Math., 137 (2001), pp. 229--243.
6.
J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072--1092.
7.
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129--151.
8.
A. J. Christlieb, R. D. Haynes, and B. W. Ong, A parallel space-time algorithm, SIAM J. Sci. Comput., 34 (2012), pp. C233--C248, https://doi.org/10.1137/110843484.
9.
M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105--132.
10.
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
11.
A. Ern, I. Smears, and M. Vohralík, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal., 55 (2017), pp. 2811--2834, https://doi.org/10.1137/16M1097626.
12.
A. Ern, I. Smears, and M. Vohralí­k, Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems, IMA J. Numer. Anal., 2018, https://doi.org/10.1093/imanum/dry035.
13.
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661, https://doi.org/10.1137/130944230.
14.
R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Computational Science---ICCS 2002, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, eds., Springer, 2002, pp. 632--641.
15.
M. Frigo and S. G. Johnson, The design and implementation of FFTW$3$, Proc. IEEE, 93 (2005), pp. 216--231.
16.
M. J. Gander, $50$ Years of Time Parallel Time Integration, Springer International Publishing, Cham, 2015, pp. 69--113.
17.
M. J. Gander and S. Güttel, PARAEXP: A parallel integrator for linear initial-value problems, SIAM J. Sci. Comput., 35 (2013), pp. C123--C142, https://doi.org/10.1137/110856137.
18.
M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A2173--A2208, https://doi.org/10.1137/15M1046605.
19.
M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., 29 (2007), pp. 556--578, https://doi.org/10.1137/05064607X.
20.
E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems, Numer. Math., 93 (2002), pp. 279--313.
21.
A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers Appl. Math. 17, SIAM, Philadelphia, 1997, https://doi.org/10.1137/1.9781611970937.
22.
W. Hackbusch, Parabolic multigrid methods, in Computing Methods in Applied Sciences and Engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189--197.
23.
T.-T.-P. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition methods for diffusion problems in mixed formulations, SIAM J. Numer. Anal., 51 (2013), pp. 3532--3559, https://doi.org/10.1137/130914401.
24.
G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992), pp. 585--595.
25.
G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848--864, https://doi.org/10.1137/0916050.
26.
G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 531--541, https://doi.org/10.1137/0916034.
27.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel,'' C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661--668.
28.
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Grundlehren Math. Wiss. 181, Springer-Verlag, New York, 1972.
29.
Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to parallel implementation, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, Berlin, 2005, pp. 441--448.
30.
J. Málek and Z. Strakoš, Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs, SIAM Spotlights 1, SIAM, Philadelphia, 2015, https://doi.org/10.1137/1.9781611973846.
31.
E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1012--A1033.
32.
J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), pp. 305--326.
33.
J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM, 7 (1964), pp. 731--733.
34.
C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617--629, https://doi.org/10.1137/0712047.
35.
J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), pp. 816--829.
36.
R. B. Pelz, Parallel FFTs, in Parallel Numerical Algorithms (Hampton, VA, 1994), ICASE/LaRC Interdiscip. Ser. Sci. Eng. 4, Kluwer Acad. Publ., Dordrecht, 1997, pp. 245--266.
37.
J. Pestana and A. J. Wathen, Natural preconditioning and iterative methods for saddle point systems, SIAM Rev., 57 (2015), pp. 71--91, https://doi.org/10.1137/130934921.
38.
C. Schwab, $p$- and $hp$-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numer. Math. Sci. Comput., The Clarendon Press, Oxford University Press, New York, 1998.
39.
I. Smears, Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method, IMA J. Numer. Anal., 37 (2017), pp. 1961--1985.
40.
F. Tantardini and A. Veeser, The $L^2$-projection and quasi-optimality of Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 54 (2016), pp. 317--340, https://doi.org/10.1137/140996811.
41.
K. Urban and A. T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comp., 83 (2014), pp. 1599--1615.
42.
A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329--376.
43.
D. E. Womble, A time-stepping algorithm for parallel computers, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 824--837, https://doi.org/10.1137/0911049.
44.
P. H. Worley, Limits on parallelism in the numerical solution of linear partial differential equations, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1--35, https://doi.org/10.1137/0912001.
45.
W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach, Math. Comp., 71 (2002), pp. 479--505.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C28 - C51
ISSN (online): 1095-7197

History

Submitted: 23 February 2018
Accepted: 22 October 2018
Published online: 29 January 2019

Keywords

  1. parabolic partial differential equations
  2. time-parallel methods
  3. analysis of iterative methods and preconditioners
  4. inf-sup stability
  5. parallel complexity
  6. weak and strong scaling

MSC codes

  1. 65M22
  2. 65F10

Authors

Affiliations

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 647134

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media