Abstract

In bounded, polygonal domains $D \subset \Bbb{R}^d$, we analyze solution regularity and sparsity for computational uncertainty quantification for spectral fractional diffusion. Several types of uncertainty are considered: (i) uncertain, parametric diffusion coefficients; (ii) uncertain fractional order; and (iii) uncertain physical domains $D$. For any of these problem classes, we analyze sparsity of countably parametric solution families. A principal novel technical contribution of the paper is a sparsity analysis for operator equations with distributed uncertain inputs; in particular, the parametric input may be given as a generalized polynomial chaos (gpc) representation, generalizing earlier results which required an affine-parametric representation. The summability results established here imply best $N$-term approximation rate bounds as well as dimension-independent convergence rates of numerical approximation methods, such as stochastic collocation, Smolyak and quasi--Monte Carlo integration methods, compressed sensing, and least-squares approximation.

Keywords

  1. fractional diffusion
  2. nonlocal operators
  3. uncertainty quantification
  4. sparsity
  5. generalized polynomial chaos

MSC codes

  1. 26A33
  2. 65N12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Antil, E. Otárola, and A. J. Salgado, Optimization with respect to order in a fractional diffusion model: Analysis, approximation and algorithmic aspects, J. Sci. Comput., 77 (2018), pp. 204--224, https://doi.org/10.1007/s10915-018-0703-0.
2.
M. Bachmayr, A. Cohen, D. Du͂ng, and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs, SIAM J. Numer. Anal., 55 (2017), pp. 2151--2186, https://doi.org/10.1137/17M111626X.
3.
M. Bachmayr, A. Cohen, and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 321--339, https://doi.org/10.1051/m2an/2016045.
4.
L. Banjai, J. Melenk, R. Nochetto, E. Otárola, A. Salgado, and C. Schwab, Tensor FEM for spectral fractional diffusion, Found. Comput. Math., published online 29 October 2018, https://doi.org/10.1007/s10208-018-9402-3.
5.
A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Salgado, Numerical methods for fractional diffusion, Comput. Vis. Sci., 19 (2018), pp. 19--46, https://doi.org/10.1007/s00791-018-0289-y.
6.
A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp., 84 (2015), pp. 2083--2110, http://doi.org/10.1090/S0025-5718-2015-02937-8.
7.
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), pp. 911--941, http://doi.org/10.1090/S0002-9947-2014-05906-0.
8.
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), pp. 2052--2093, http://doi.org/10.1016/j.aim.2010.01.025.
9.
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), pp. 1245--1260, http://doi.org/10.1080/03605300600987306.
10.
A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), pp. 1353--1384, http://doi.org/10.1080/03605302.2011.562954.
11.
A. Chkifa, A. Cohen, and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, J. Math. Pures Appl. (9), 103 (2015), pp. 400--428, http://doi.org/10.1016/j.matpur.2014.04.009.
12.
A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best $N$-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615--646, http://doi.org/10.1007/s10208-010-9072-2.
13.
A. Cohen, R. Devore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's, Anal. Appl., 9 (2011), pp. 11--47, http://doi.org/10.1142/S0219530511001728.
14.
A. Cohen, G. Migliorati, and F. Nobile, Discrete least-squares approximations over optimized downward closed polynomial spaces in arbitrary dimension, Constr. Approx., 45 (2017), pp. 497--519, https://doi.org/10.1007/s00365-017-9364-8.
15.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985, http://doi.org/10.1007/978-3-662-00547-7.
16.
J. Dick, F. Y. Kuo, Q. T. Le Gia, and C. Schwab, Multilevel higher order QMC Petrov--Galerkin discretization for affine parametric operator equations, SIAM J. Numer. Anal., 54 (2016), pp. 2541--2568, https://doi.org/10.1137/16M1078690.
17.
J. Dick, Q. T. Le Gia, and C. Schwab, Higher order quasi--Monte Carlo integration for holomorphic, parametric operator equations, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 48--79, https://doi.org/10.1137/140985913.
18.
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
19.
R. N. Gantner, L. Herrmann, and C. Schwab, Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs, in Contemporary Computational Mathematics---A Celebration of the 80th Birthday of Ian Sloan, J. Dick, F. Y. Kuo, and H. Woźniakowski, eds., Springer-Verlag, Cham, 2018, pp. 373--405, https://doi.org/10.1007/978-3-319-72456-0_18.
20.
R. N. Gantner, L. Herrmann, and C. Schwab, Quasi--Monte Carlo integration for affine-parametric, elliptic PDEs: Local supports and product weights, SIAM J. Numer. Anal., 56 (2018), pp. 111--135, https://doi.org/10.1137/16M1082597.
21.
H. Harbrecht, M. D. Peters, and M. Schmidlin, Uncertainty quantification for PDEs with anisotropic random diffusion, SIAM J. Numer. Anal., 55 (2017), pp. 1002--1023, https://doi.org/10.1137/16M1085760.
22.
M. Hervé, Analyticity in Infinite-Dimensional Spaces, de Gruyter Stud. Math. 10, Walter de Gruyter & Co., Berlin, 1989, http://doi.org/10.1515/9783110856941.
23.
G. A. Mun͂oz, Y. Sarantopoulos, and A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math., 134 (1999), pp. 1--33.
24.
R. Nochetto, E. Otárola, and A. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), pp. 733--791, http://doi.org/10.1007/s10208-014-9208-x.
25.
H. Rauhut and C. Schwab, Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations, Math. Comp., 86 (2017), pp. 661--700, http://doi.org/10.1090/mcom/3113.
26.
R. T. Seeley, Complex powers of an elliptic operator, in Singular Integrals (Proc. Sympos. Pure Math., Chicago, IL, 1966), Amer. Math. Soc., Providence, RI, 1967, pp. 288--307.
27.
R. Seeley, Topics in pseudo-differential operators, in Pseudo-differential Operators, C.I.M.E. Summer Schools 47, L. Nirenberg, ed., Springer, Berlin, 1969, pp. 167--305.
28.
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd ed., translated from the Russian by S. I. Andersson, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 2001, https://doi.org/10.1007/978-3-642-56579-3,
29.
P. Stinga and J. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), pp. 2092--2122, http://doi.org/10.1080/03605301003735680.
30.
N. G. Trillos and D. Sanz-Alonso, The Bayesian formulation and well-posedness of fractional elliptic inverse problems, Inverse Problems, 33 (2017), 065006.
31.
J. Zech and C. Schwab, Convergence Rates of High Dimensional Smolyak Quadrature, Tech. Report 2017-27, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2017, https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-27.pdf.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 913 - 947
ISSN (online): 2166-2525

History

Submitted: 19 March 2018
Accepted: 1 April 2019
Published online: 23 July 2019

Keywords

  1. fractional diffusion
  2. nonlocal operators
  3. uncertainty quantification
  4. sparsity
  5. generalized polynomial chaos

MSC codes

  1. 26A33
  2. 65N12

Authors

Affiliations

Funding Information

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung https://doi.org/10.13039/501100001711 : SNF 159940

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media