Abstract

Motivated by fractional derivative models in viscoelasticity, a class of semilinear stochastic Volterra integro-differential equations, and their deterministic counterparts, are considered. A generalized exponential Euler method, named here the Mittag--Leffler Euler integrator, is used for the temporal discretization, while the spatial discretization is performed by the spectral Galerkin method. The temporal rate of strong convergence is found to be (almost) twice compared to when the backward Euler method is used together with a convolution quadrature for time discretization. Numerical experiments that validate the theory are presented.

Keywords

  1. Euler integrator
  2. fractional equations
  3. stochastic differential equations
  4. strong convergence
  5. integro-differential equations
  6. Riesz kernel

MSC codes

  1. 34A08
  2. 45D05
  3. 45K05
  4. 60H15
  5. 60H35
  6. 65M12
  7. 65M60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Andersson, M. Kovács, and S. Larsson, Weak error analysis for semilinear stochastic Volterra equations with additive noise, J. Math. Anal. Appl., 437 (2016), pp. 1283--1304.
2.
R. Anton, D. Cohen, S. Larsson, and X. Wang, Full discretization of semi-linear stochastic wave equations driven by multiplicative noise, SIAM J. Numer. Anal., 54 (2016), pp. 1093--1119.
3.
B. Baeumer, M. Geissert, and M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise, J. Differential Equations, 258 (2015), pp. 535--554.
4.
S. Becker, A. Jentzen, and P. Kloeden, An exponential Wagner-Platen type scheme for SPDES, SIAM J. Numer. Anal., 54 (2016), pp. 2389--2426.
5.
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 44, Cambridge University Press, Cambridge, UK, 1992.
6.
M. Gunzburger, B. Li, and J. Wang, Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise, Math. Comp., 88 (2019), pp. 1715--1741.
7.
M. Gunzburger, B. Li, and J. Wang, Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise, Numer. Math., 141 (2019), pp. 1043--1077.
8.
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209--286.
9.
A. Jentzen, P. Kloeden, and G. Winkel, Efficient simulation of nonlinear parabolic SPDEs with additive noise, Ann. Appl. Probab., 21 (2011), pp. 908--950.
10.
M. Kovács, S. Larsson, and F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II: Fully discrete schemes, BIT, 53 (2013), pp. 497--525.
11.
M. Kovács and J. Printems, Strong order convergence of a fully discrete approximation of a linear stochastic Volterra equation, Math. Comp., 83 (2014), pp. 2325--2346.
12.
M. Kovács and J. Printems, Weak convergence of a fully discrete approximation of a linear stochastic evolution equation with a positive-type memory term, J. Math. Anal. Appl., 413 (2014), pp. 939--952.
13.
S. Larsson and M. Molteni, Numerical solution of parabolic problems based on a weak space-time formulation, Comput. Methods Appl. Math., 17 (2017), pp. 65--84.
14.
G. J. Lord and A. Tambue, Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise, IMA J. Numer. Anal., 33 (2013), pp. 515--543.
15.
Ch. Lubich, I. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp., 65 (1996), pp. 1--17.
16.
F. Mainardi and P. Paradisi, Fractional diffusive waves, J. Comput. Acoust., 9 (2001), pp. 1417--1436.
17.
W. McLean and V. Thomée, Numerical solution of an evolution equation with positive memory term, J. Austral. Math. Soc. Ser. B, 35 (1993), pp. 23--70.
18.
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
19.
I. Podlubny and M. Kacenak, MATLAB MLF code, File 8738, MATLAB Central File Exchange, 2009.
20.
J. Prüss, Evolutionary Integral Equations and Applications, Monogr. Math. 87, Birkhäuser, Basel, 1993.
21.
X. Wang, Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise, IMA J. Numer. Anal., 37 (2017), pp. 956--984.
22.
X. Wang, S. Gan, and J. Tang, Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise, SIAM J. Sci. Comput., 36 (2014), pp. A2611--A2632.
23.
X. Wang and R. Qi, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise, Appl. Math. Lett., 46 (2015), pp. 31--37.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 66 - 85
ISSN (online): 1095-7170

History

Submitted: 28 March 2018
Accepted: 4 November 2019
Published online: 7 January 2020

Keywords

  1. Euler integrator
  2. fractional equations
  3. stochastic differential equations
  4. strong convergence
  5. integro-differential equations
  6. Riesz kernel

MSC codes

  1. 34A08
  2. 45D05
  3. 45K05
  4. 60H15
  5. 60H35
  6. 65M12
  7. 65M60

Authors

Affiliations

Funding Information

NordForsk https://doi.org/10.13039/501100004785 : 74756

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media