Abstract

We give a localized regularity condition for energy conservation of weak solutions of the Euler equations on a domain $\Omega\subset \mathbb{R}^d$, $d\ge 2$, with boundary. In the bulk of fluid, we assume Besov regularity of the velocity $u\in L^3(0,T;B_{3}^{1/3, c_0})$. On an arbitrary thin neighborhood of the boundary, we assume boundedness of velocity and pressure and, at the boundary, we assume continuity of wall-normal velocity. We also prove two theorems which establish that the global viscous dissipation vanishes in the inviscid limit for Leray--Hopf solutions $u^\nu$ of the Navier--Stokes equations under the similar assumptions, but holding uniformly in a thin boundary layer of width $O(\nu^{\min\{1,\frac{1}{2(1-\sigma)}\}})$ when $u\in L^3(0, T; B_3^{\sigma, c_0})$ in the interior for any $\sigma\in [1/3,1]$. The first theorem assumes continuity of the velocity in the boundary layer, whereas the second assumes a condition on the vanishing of energy dissipation within the layer. In both cases, strong $L^3_tL^3_{x,loc}$ convergence holds to a weak solution of the Euler equations. Finally, if a strong Euler solution exists in the background, we show that equicontinuity at the boundary within a $O(\nu)$ strip alone suffices to conclude the absence of anomalous dissipation.

Keywords

  1. Onsager's conjecture
  2. anomalous dissipation
  3. bounded domain
  4. inviscid limit

MSC codes

  1. 76F02
  2. 35Q30
  3. 35Q31
  4. 35Q35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Onsager, Statistical hydrodynamics, Il Nuovo Cimento. Suppl., 6 (1949), pp. 279--287.
2.
G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), pp. 222--240.
3.
P. Constantin, W. E, and E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), pp. 207--209.
4.
J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), pp. 249--255.
5.
A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), pp. 1233--1252.
6.
A. Cheskidov, M. C. Lopes Filho, H. J. Nussenzveig Lopes, and R. Shvydkoy, Energy conservation in two-dimensional incompressible ideal fluids, Comm. Math. Phys., 348 (2016), pp. 129--143.
7.
R. Shvydkoy, Lectures on the Onsager conjecture, Discreate Contin. Dyn. Syst. Ser. S, 3 (2010), pp. 473--496.
8.
T. D. Drivas and G. L. Eyink, An Onsager Singularity Theorem for Leray Solutions of Incompressible Navier-Stokes, preprint, https://arxiv.org/abs/1710.05205, 2017.
9.
T. D. Drivas and G. L. Eyink, An Onsager singularity theorem for turbulent solutions of compressible Euler equations, Comm. Math. Phys. 359 (2017), pp. 1--31.
10.
C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), pp. 1417--1436.
11.
C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), pp. 225--260.
12.
C. De Lellis and L. Székelyhidi, Jr., The $h$-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49 (2012), pp. 347--375.
13.
P. Isett, A proof of Onsager's conjecture, Ann. Math., to appear.
14.
T. Buckmaster, C. De Lellis, L. Székelyhidi, Jr., and V. Vicol, Onsager's conjecture for admissible weak solutions, Comm. Pure Appl. Math., to appear.
15.
G. L. Eyink, Review of the Onsager “Ideal Turbulence” Theory, preprint, https://arxiv.org/abs/1803.02223, 2018.
16.
V. Borue and S. A. Orszag, Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity, Phys. Rev. E, 51 (1995), pp. R856--R859.
17.
H. Touil, J.-P. Bertoglio, and L. Shao, The decay of turbulence in a bounded domain, J. Turbul., 3 (2002), N49.
18.
K. R. Sreenivasan, An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, 10 (1998), pp. 528--529.
19.
Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, 15 (2003), pp. L21--L24.
20.
K. R. Sreenivasan, On the scaling of the turbulence energy dissipation rate, Phys. Fluids, 27 (1984), pp. 1048--1051.
21.
B. R. Pearson, P. A. Krogstad, and W. van de Water, Measurements of the turbulent energy dissipation rate, Phys. Fluids, 14 (2002), pp. 1288--1290.
22.
G. L. Eyink, Besov spaces and the multifractal hypothesis, J. Stat. Phys., 78 (1995), pp. 353--375.
23.
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), pp. 193--248.
24.
E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Erhard Math. Nachr., (1950), pp. 213--231.
25.
J. A. Mauro, On the regularity properties of the pressure field associated to a Hopf weak solution to the Navier-Stokes equations, Pliska Stud. Math. 23 (2014), pp. 95--118.
26.
Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), pp. 72--94.
27.
H. Sohr and W. von Wahl, On the regularity of the pressure of weak solutions of Navier-Stokes equations, Arch. Math. (Basel), 46 (1986), pp. 428--439.
28.
C. Bardos and E. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), pp. 197--207.
29.
C. Bardos, E. Titi, and E. Wiedemann, Onsager's Conjecture with Physical Boundaries and an Application to the Viscosity Limit, preprint, https://arxiv.org/abs/1803.04939, 2018.
30.
G. Lewis and H. Swinney, Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow, Phys. Rev. E, 59 (1999), pp. 5457--5467.
31.
L. Escauriaza and S. Montaner, Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti. Acad. Naz. Lincei Rend. Lincei. Mat. Appl., 28 (2017), pp. 49--63.
32.
O. Cadot, Y. Couder, A. Daerr, S. Douady, and A. Tsinober, Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring, Phys. Rev. E, 56 (1997), 427.
33.
C. Fureby and G. Tabor, Mathematical and physical constraints on large-eddy simulations, Theoret. Comput. Fluid Dyn., 9 (1997), pp. 85--102.
34.
S. Ghosal, Mathematical and physical constraints on large-eddy simulation of turbulence, AIAA J., 37 (1999), pp. 425--433.
35.
R. van der Bos and B. Geurts, Commutator errors in the filtering approach to large-eddy simulation, Phys. Fluids, 17 (2005), 035108.
36.
B. Geurts and D. Holm, Commutator errors in large-eddy simulation, J. Phys. A, 39 (2006), 2213
37.
S. Chen, Z. Xia, S. Pei, J. Wang, Y. Yang, Z. Xiao, and Y. Shi, Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows, J. Fluid Mech., 703 (2012), pp. 1--28.
38.
T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in Seminar on Nonlinear Partial Differential Equations, Springer, New York, 1984, 85--98.
39.
L. Prandtl, Zur turbulenten Strömung in Röhren und längs Platten, Ergeb. Aerodyn. Versuchsanstalt Göttingen, 4 (1932), pp. 18--29.
40.
T. von Kármán, Mechanische Ähnlichkeit und Turbulenz, Nachr. Akad. Wiss. Göttingen II. Math. Phys. KL., 58 (1930), pp. 58--76.
41.
G. L. Eyink, Turbulence Theory, course notes, http://www.ams.jhu.edu/~eyink/Turbulence, 2015.
42.
B. J. Mckeon and K. R. Sreenivasan, Introduction: Scaling and structure in high Reynolds number wall-bounded flows, Philos. Trans. Roy. Soc. A, 365 (2007), pp. 635--646
43.
R. L. Panton, Composite asymptotic expansions and scaling wall turbulence, Philos. Trans. Roy. Soc. A, 365 (2007), pp. 733--754.
44.
R. Nguyen van yen, M. Farge, and K. Schneider, Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity, Phys. Rev. Lett., 106 (2011), 184502.
45.
P. Constantin and V. Vicol, Remarks on high Reynolds numbers hydrodynamics and the inviscid limit, J. Nonlinear Sci., 28 (2018), pp. 711--724.
46.
K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, and N. Cao, Asymmetry of velocity increments in fully developed turbulence and the scaling of low-order moments, Phys. Rev. Letts., 77, (1996), pp. 1488--1491.
47.
F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., 140 (1984), pp. 63--89.
48.
P. Constantin, T. Elgindi, M. Ignatova, and V. Vicol, Remarks on the inviscid limit for the Navier--Stokes equations for uniformly bounded velocity fields, SIAM J. Math. Anal., 49 (2017), pp. 1932--1946.
49.
E. Wiedemann, Weak-strong uniqueness in fluid dynamics, preprint, https://arxiv.org/abs/1705.04220, 2017.
50.
C. Bardos, L. Székelyhidi, Jr., and E. Wiedemann, Non-uniqueness for the Euler equations: The effect of the boundary, Russian Math. Surveys, 69 (2014), pp. 189--207.
51.
L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, Amer. Math. Soc. Providence, RI, 2010.
52.
J. Duistermaat and J. Kolk, Multidimensional real analysis I: Differentiation, Cambridge University Press, Cambridge, UK, 2004.
53.
P. Isett, Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows, preprint, https://arxiv.org/abs/1710.11186, 2017.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4785 - 4811
ISSN (online): 1095-7154

History

Submitted: 4 April 2018
Accepted: 26 June 2018
Published online: 6 September 2018

Keywords

  1. Onsager's conjecture
  2. anomalous dissipation
  3. bounded domain
  4. inviscid limit

MSC codes

  1. 76F02
  2. 35Q30
  3. 35Q31
  4. 35Q35

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1703997

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media