Fast Solvers for Two-Dimensional Fractional Diffusion Equations Using Rank Structured Matrices
Abstract
We consider the discretization of time-space diffusion equations with fractional derivatives in space and either one-dimensional (1D) or 2D spatial domains. The use of an implicit Euler scheme in time and finite differences or finite elements in space leads to a sequence of dense large scale linear systems describing the behavior of the solution over a time interval. We prove that the coefficient matrices arising in the 1D context are rank structured and can be efficiently represented using hierarchical formats ($\mathcal H$-matrices, HODLR). Quantitative estimates for the rank of the off-diagonal blocks of these matrices are presented. We analyze the use of HODLR arithmetic for solving the 1D case and we compare this strategy with existing methods that exploit the Toeplitz-like structure to precondition the GMRES iteration. The numerical tests demonstrate the convenience of the HODLR format when at least a reasonably low number of time steps is needed. Finally, we explain how these properties can be leveraged to design fast solvers for problems with 2D spatial domains that can be reformulated as matrix equations. The experiments show that the approach based on the use of rank-structured arithmetic is particularly effective and outperforms current state of the art techniques.
1. ITER---The Way to New Energy, https://www.iter.org/.
2. . Feng, Fractional-order anisotropic diffusion for image denoising , IEEE Trans. Image Process. , 16 ( 2007 ), pp. 2492 -- 2502 .
3. , An error analysis for rational Galerkin projection applied to the Sylvester equation , SIAM J. Numer. Anal. , 49 ( 2011 ), pp. 2430 -- 2450 , https://doi.org/10.1137/110824590.
4. , On the singular values of matrices with displacement structure , SIAM J. Matrix Anal. Appl. , 38 ( 2017 ), pp. 1227 -- 1248 , https://doi.org/10.1137/16M1096426.
5. , Generalized rational Krylov decompositions with an application to rational approximation , SIAM J. Matrix Anal. Appl. , 36 ( 2015 ), pp. 894 -- 916 , https://doi.org/10.1137/140998081.
6. , Infinitely divisible matrices , Amer. Math. Monthly , 113 ( 2006 ), pp. 221 -- 235 , https://doi.org/10.2307/27641890.
7. , Hierarchical Matrices , Lecture note 21 , 2003 .
8. , Low-rank solvers for fractional differential equations , Electron. Trans. Numer. Anal. , 45 ( 2016 ), pp. 107 -- 132 .
9. , Fractional elliptic equations, Caccioppoli estimates and regularity , Ann. Inst. H. Poincaré Anal. Non Linéaire , 33 ( 2016 ), pp. 767 -- 807 , https://doi.org/10.1016/j.anihpc.2015.01.004.
10. , Fractional diffusion in plasma turbulence , Phys. Plasmas , 11 ( 2004 ), pp. 3854 -- 3864 .
11. , Boundary problems for the fractional and tempered fractional operators , Multiscale Model. Simul. , 16 ( 2018 ), pp. 125 -- 149 .
12. , Spectral analysis and structure preserving preconditioners for fractional diffusion equations , J. Comput. Phys. , 307 ( 2016 ), pp. 262 -- 279 .
13. , Finite element method for a kind of two-dimensional space-fractional diffusion equation with its implementation , Amer. J. Comput. Math. , 5 ( 2015 ), 135 .
14. , Separable Type Representations of Matrices and Fast Algorithms . Vol. 1 , Oper. Theory Adv. Appl. 234, Birkhäuser/Springer , Basel, 2014 .
15. , Variational formulation for the stationary fractional advection dispersion equation , Numer. Methods Partial Differential Equations , 22 ( 2006 ), pp. 558 -- 576 .
16. , Spectral properties of Toeplitz-plus-Hankel matrices , Calcolo , 33 ( 1996 ), pp. 87 -- 98 , https://doi.org/10.1007/BF02575710.
17. , Linear Algebra Appl. , 432 ( 2010 ), pp. 351 -- 356 .
18. , Generalized Locally Toeplitz Sequences: Theory and Applications . Vol. I , Springer , New York , 2017 .
19. , A block Lánczos method for computing the singular values of corresponding singular vectors of a matrix , ACM Trans. Math. Software , 7 ( 1981 ), pp. 149 -- 169 , https://doi.org/10.1145/355945.355946.
20. , Singular Value Bounds for the Cauchy Matrix and Solutions to Sylvester Equations , Technical report 13 , University of Kiel , Kiel, Germany , 2001 .
21. . Le Borne, Adaptive geometrically balanced clustering of $\mathscr H$-matrices , Computing , 73 ( 2004 ), pp. 1 -- 23 .
22. Krylov space methods for linear systems with multiple right-hand sides , in
Proceedings of The Joint Workshop on Computational Chemistry and Numerical Analysis (CCNA2005) , 2005 .23. , A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices , Computing , 62 ( 1999 ), pp. 89 -- 108 .
24. , Hierarchical Matrices: Algorithms and Analysis , Springer Ser. Comput. Math. 49, Springer , New York, 2015 .
25. Arnoldi methods for large low-rank Sylvester matrix equations , Appl. Numer. Math. , 60 ( 2010 ), pp. 1171 -- 1182 , https://doi.org/10.1016/j.apnum.2010.07.005.
26. , Preconditioned iterative methods for two-dimensional space-fractional diffusion equations , Commun. Comput. Phys. , 18 ( 2015 ), pp. 469 -- 488 .
27. , Convergence analysis of the extended Krylov subspace method for the Lyapunov equation , Numer. Math. , 118 ( 2011 ), pp. 567 -- 586 , https://doi.org/10.1007/s00211-011-0366-3.
28. , Low-rank updates and a divide-and-conquer method for linear matrix equations , SIAM J. Sci. Comput. , 41 ( 2019 ), pp. A848 -- A876 , https://doi.org/10.1137/17M1161038.
29. . Sun, A circulant preconditioner for fractional diffusion equations , J. Comput. Phys. , 242 ( 2013 ), pp. 715 -- 725 .
30. , A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations , Comput. Mech. , 62 ( 2018 ), pp. 185 -- 211 .
31. , Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations , Appl. Numer. Math. , 115 ( 2017 ), pp. 200 -- 213 .
32. , Solving rank-structured Sylvester and Lyapunov equations , SIAM J. Matrix Anal. Appl. , 39 ( 2018 ), pp. 1564 -- 1590 , https://doi.org/10.1137/17M1157155.
33. , Hierarchical Matrix Toolbox, https://github.com/numpi/hm-toolbox , 2015 . , https://github.com/numpi/hm-toolbox.
34. , Finite difference approximations for fractional advection-dispersion flow equations , J. Comput. Appl. Math. , 172 ( 2004 ), pp. 65 -- 77 .
35. , Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , J. Comput. Phys. , 350 ( 2017 ), pp. 992 -- 1011 .
36. , Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations , Numer. Algorithms , 74 ( 2017 ), pp. 153 -- 173 .
37. , Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations , SIAM J. Sci. Comput. , 38 ( 2016 ), pp. A2806 -- A2826 .
38. . Sun, Multigrid method for fractional diffusion equations , J. Comput. Phys. , 231 ( 2012 ), pp. 693 -- 703 .
39. , Fractional Differential Equations: An Introduction to Fractional Derivatives , Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng. 198 , Academic Press , New York , 1998 .
40. , Waiting-times and returns in high-frequency financial data: An empirical study , Phys. A , 314 ( 2002 ), pp. 749 -- 755 .
41. , Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in ${\Bbb R}^2$ , J. Comput. Appl. Math. , 193 ( 2006 ), pp. 243 -- 268 , https://doi.org/10.1016/j.cam.2005.06.005.
42. , Low-rank matrix approximation using the Lanczos bidiagonalization process with applications , SIAM J. Sci. Comput. , 21 ( 2000 ), pp. 2257 -- 2274 , https://doi.org/10.1137/S1064827597327309.
43. , A new iterative method for solving large-scale Lyapunov matrix equations , SIAM J. Sci. Comput. , 29 ( 2007 ), pp. 1268 -- 1288 , https://doi.org/10.1137/06066120X.
44. , Computational methods for linear matrix equations , SIAM Rev. , 58 ( 2016 ), pp. 377 -- 441 .
45. , A class of second order difference approximations for solving space fractional diffusion equations , Math. Comp. , 84 ( 2015 ), pp. 1703 -- 1727 .
46. , Computing with Functions in Two Dimensions , PhD thesis, University of Oxford , 2014 .
47. , An extension of Chebfun to two dimensions , SIAM J. Sci. Comput. , 35 ( 2013 ), pp. C495 -- C518 , https://doi.org/10.1137/130908002.
48. , Matrix Computations and Semiseparable Matrices. Linear Systems , Vol. 1 , The Johns Hopkins University Press , Baltimore, MD , 2008 .
49. , A direct $O(N\log^2N)$ finite difference method for fractional diffusion equations , J. Comput. Phys. , 229 ( 2010 ), pp. 8095 -- 8104 , https://doi.org/10.1016/j.jcp.2010.07.011.
50. , Structured Block Basis Factorization for Scalable Kernel Matrix Evaluation, preprint, arXiv:1505.00398 , 2015 .
51. . Li, Fast algorithms for hierarchically semiseparable matrices , Numer. Linear Algebra Appl. , 17 ( 2010 ), pp. 953 -- 976 , https://doi.org/10.1002/nla.691.
52. , Adaptive finite element method for fractional differential equations using hierarchical matrices , Comput. Methods Appl. Mech. Engrg. , 325 ( 2017 ), pp. 56 -- 76 , https://doi.org/10.1016/j.cma.2017.06.017.