Abstract

For many wave propagation problems with random sources it has been demonstrated that cross correlations of wave fields are proportional to the imaginary part of the Green function of the underlying wave equation. This leads to the inverse problem to recover coefficients of a wave equation from the imaginary part of the Green function on some measurement manifold. In this paper we prove, in particular, local uniqueness results for the Schrödinger equation with one frequency and for the acoustic wave equation with unknown density and sound speed and two frequencies. As the main tool of our analysis, we establish new algebraic identities between the real and the imaginary part of Green's function, which in contrast to the well-known Kramers--Kronig relations, involve only one frequency.

Keywords

  1. inverse scattering problems
  2. uniqueness for inverse problems
  3. passive imaging
  4. correlation data
  5. imaginary part of Green's function

MSC codes

  1. 35R30
  2. 35J08
  3. 35Q86
  4. 78A46

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. D. Agaltsov and R. G. Novikov, Uniqueness and non-uniqueness in acoustic tomography of moving fluid, J. Inverse Ill-Posed Probl., 24 (2015), pp. 333--340.
2.
S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, 2 (1975), pp. 151--218.
3.
Y. M. Berezanskii, On the uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Tr. Mosk. Mat. Obshch., 7 (1958), pp. 3--62.
4.
A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008), pp. 19--33.
5.
V. A. Burov, S. N. Sergeev, and A. A. Shmelev, The possibility of reconstructing the seasonal variability of the ocean using acoustic tomography methods, Acoust. Phys., 53 (2007), pp. 257--267, https://doi.org/10.1134/S1063771007030037.
6.
V. A. Burov, S. N. Sergeev, and A. S. Shurup, The use of low-frequency noise in passive tomography of the ocean, Acoust. Phys., 54 (2008), pp. 42--51, https://doi.org/10.1134/S1063771008010077.
7.
B. E. Cain, Inertia theory, Linear Algebra Appl., 30 (1980), pp. 211--240.
8.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd ed., Springer, Berlin, 2013.
9.
A. J. Devaney, Mathematical Foundations of Imaging, Tomography and Wavefield Inversion, Cambridge University Press, Cambridge, 2012.
10.
D. Dos Santos Ferreira, D. Kenig, J. Sjöstrand, and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), pp. 461--488.
11.
L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Multi-Particle Systems, Nauka, Moscow, 1985.
12.
J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sci., 2 (2009), pp. 396--437, https://doi.org/10.1137/080723454.
13.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998, https://doi.org/10.1007/978-3-642-61798-0.
14.
L. Gizon, H. Barucq, M. Duruflé, C. Hanson, M. Leguèbe, A. Birch, J. Chabassier, D. Fournier, T. Hohage, and E. Papini, Computational helioseismology in the frequency domain: Acoustic waves in axisymmetric solar models with flows, Astronom. Astrophys., 600 (2017), A35, https://doi.org/10.1051/0004-6361/201629470.
15.
L. Gizon, A. Birch, and H. Spruit, Local helioseismology: Three-dimensional imaging of the solar interior, Ann. Rev. Astron. Astrophys., 48 (2010), pp. 289--338.
16.
I. T. Gokhberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché, Mat. Sb., 84 (1971), pp. 607--629.
17.
P. Hähner and T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., 62 (2001), pp. 670--685.
18.
S. Hanasoge, L. Gizon, and K. R. Sreenivasan, Seismic sounding of convection in the sun, Annu. Rev. Fluid Mech., 48 (2016), pp. 191--217, https://doi.org/10.1146/annurev-fluid-122414-034534.
19.
T. Helin, M. Lassas, L. Oksanen, and T. Saksala, Correlation based passive imaging with a white noise source, J. Math. Pures Appl. (9), 116 (2018), pp. 132--160.
20.
J. W. Helton and J. V. Ralston, The first variation of the scattering matrix, J. Differential Equations, 21 (1976), pp. 378--394, https://doi.org/10.1016/0022-0396(76)90127-3.
21.
L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983.
22.
M. Isaev and R. Novikov, New global stability estimates for monochromatic inverse acoustic scattering, SIAM J. Math. Anal., 45 (2013), pp. 1495--1504.
23.
T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980.
24.
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
25.
R. B. Melrose, Geometric Scattering Theory, Cambridge University Press, Cambridge, 1995.
26.
A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2), 128 (1988), pp. 531--576, https://doi.org/10.2307/1971435.
27.
R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta\psi +(v(x)-Eu(x))\psi=0$, Funktsional. Anal. i Prilozhen., 22 (1988), pp. 11--22, 96, https://doi.org/10.1007/BF01077418.
28.
P. Pike and P. Sabatier, eds., Scattering, Academic Press, London, 2002, https://doi.org/10.1016/B978-012613760-6/50103-0.
29.
P. Roux, K. G. Sabra, W. A. Kuperman, and A. Roux, Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Amer., 117 (2005), pp. 79--84.
30.
R. Snieder, Extracting the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves, J. Acoust. Soc. Amer., 121 (2007), 2637, https://doi.org/10.1121/1.2713673.
31.
R. Snieder and E. Larose, Extracting earth's elastic wave response from noise measurements, Ann. Rev. Earth Planetary Sci., 41 (2013), pp. 183--206, https://doi.org/10.1146/annurev-earth-050212-123936.
32.
R. Snieder, M. Miyazawa, E. Slob, I. Vasconcelos, and K. Wapenaar, A comparison of strategies for seismic interferometry, Surv. Geophys., 30 (2009), pp. 503--523, https://doi.org/10.1007/s10712-009-9069-z.
33.
P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy, Ann. Inst. Fourier (Grenoble), 40 (1990), pp. 867--884.
34.
M. Taylor, Partial Differential Equations II, 2nd ed., Springer, Berlin, 2011.
35.
R. L. Weaver and O. I. Lobkis, Ultrasonics without a source: Thermal fluctuation correlations at mhz frequencies, Phys. Rev. Lett., 87 (2001), 134301.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 2865 - 2890
ISSN (online): 1095-712X

History

Submitted: 20 April 2018
Accepted: 29 August 2018
Published online: 23 October 2018

Keywords

  1. inverse scattering problems
  2. uniqueness for inverse problems
  3. passive imaging
  4. correlation data
  5. imaginary part of Green's function

MSC codes

  1. 35R30
  2. 35J08
  3. 35Q86
  4. 78A46

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media