Abstract

We develop a novel method to compute first and second order statistical moments of the neutron kinetic density inside a nuclear system by solving the energy-dependent neutron diffusion equation. Randomness comes from the lack of precise knowledge of external sources as well as of the interaction parameters, known as cross sections. Thus, the density is itself a random variable. As Monte Carlo simulations entail intense computational work, we are interested in deterministic approaches to quantify uncertainties. By assuming as given the first and second statistical moments of the excitation terms, a sparse tensor finite element approximation of the first two statistical moments of the dependent variables for each energy group can be efficiently computed in one run. Numerical experiments provided validate our derived convergence rates and point to further research avenues.

Keywords

  1. multigroup diffusion equation
  2. uncertainty quantification
  3. sparse tensor approximation
  4. finite element method

MSC codes

  1. 82D75
  2. 65M60
  3. 35R60
  4. 65C50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123--161.
2.
K. Beddek, Y. Le Menach, S. Clenet, and O. Moreau, 3-d stochastic spectral finite-element method in static electromagnetism using vector potential formulation, IEEE Trans. Magnetics, 47 (2011), pp. 1250--1253.
3.
G. I. Bell and S. Glasstone, Nuclear Reactor Theory, Robert E. Kreiger Publishing, Malabar, FL, 1970.
4.
S. R. Bolding, Simulations of Multiplicity Distributions and Perturbations to Nubar Data, Tech. Report LA-UR--12-23825, Los Alamos National Laboratory, 2013.
5.
L. Bourhrara, H$1$ approximations of the neutron transport equation and associated diffusion equations, Transport Theory Statist. Phys., 35 (2006), pp. 89--108.
6.
T. A. Brunner, T. Mehlhorn, R. G. McClarren, and C. J. Kurecka, Advances in Radiation Modeling in Alegra: A Final Report for LDRD-67120, Efficient Implicit Multigroup Radiation Calculations, Sandia National Laboratories, 2005.
7.
M. Dashti and A. Stuart, The Bayesian approach to inverse problems, in Handbook of Uncertainty Quantification, R. Ghanem et al., eds., Springer, New York, 2016.
8.
Y. Du, Y. Luo, and J.-A. Kong, Electromagnetic scattering from randomly rough surfaces using the stochastic second-degree method and the sparse matrix/canonical grid algorithm, IEEE Trans. Geosci. Remote Sensing, 46 (2008), pp. 2831--2839.
9.
S. Duerigen, Neutron Transport in Hexagonal Reactor Cores Modeled by Trigonal-Geometry Diffusion and Simplified P3 Nodal Methods, Ph.D. thesis, Karlsruhe Institute of Technology, Germany, 2013.
10.
G. J. Habetler and M. A. Martino, Existence theorems and spectral theory for the multigroup diffusion model, in Proc. Sympos. Appl. Math. 11, AMS, Providence, RI, 1961, pp. 127--139.
11.
N. H. S. Haidar, Nodal adjoint method for multigroup diffusion in heterogeneous slab reactors, Numer. Methods Partial Differential Equations, 8 (1992), pp. 515--535.
12.
M. Hanuš, Mathematical Modeling of Neutron Transport: Theoretical and Computational Point of View, Lambert Academic Publishing, 2011.
13.
M. Hanuš and R. G. McClarren, On the use of symmetrized transport equation in goal-oriented adaptivity, J. Comput. Theoret. Transp., 45 (2016), pp. 314--333.
14.
H. Harbrecht, Second moment analysis for robin boundary value problems on random domains, in Singular Phenomena and Scaling in Mathematical Models, M. Griebel, ed., Springer, New York, 2014, pp. 361--381.
15.
H. Harbrecht, M. Peters, and M. Siebenmorgen, Combination technique based k-th moment analysis of elliptic problems with random diffusion, J. Comput. Phys., 252 (2013), pp. 128--141.
16.
H. Harbrecht, R. Schneider, and C. Schwab, Sparse second moment analysis for elliptic problems in stochastic domains, Numer. Math., 109 (2008), pp. 385--414.
17.
M. Z. Hasan and R. W. Conn, A two-dimensional finite element multigroup diffusion theory for neutral atom transport in plasmas, J. Comput. Phys., 71 (1987), pp. 371--390.
18.
C. D. Hauck and R. G. McClarren, A collision-based hybrid method for time dependent, linear, kinetic transport equations, Multiscale Model. Simul., 11 (2013), pp. 1197--1227.
19.
R. Hiptmair, C. Jerez-Hanckes, and C. Schwab, Sparse tensor edge elements, BIT, 53 (2013), pp. 925--939.
20.
S. A. Hosseini and F. Saadatian-Derakhshandeh, Galerkin and generalized least squares finite element: A comparative study for multi-group diffusion solvers, Progr. Nuclear Energy, 85 (2015), pp. 473--490.
21.
C. Jerez-Hanckes and C. Schwab, Electromagnetic wave scattering by random surfaces: uncertainty quantification via sparse tensor boundary elements, IMA J. Numer. Anal., 37 (2017), pp. 1175--1210.
22.
P. Knupp and K. Salari, Verification of Computer Codes in Computational Science and Engineering, CRC Press, Boca Raton, FL, 2002.
23.
J. R. Lamarsh, Introduction to Nuclear Reactor Theory, 3rd ed., Pearson, London, 2001.
24.
C. Lingus, Analytical test cases for neutron and radiation transport codes, in proceedings of the Second Conference on Transport Theory, 1971, p. 655.
25.
R. G. McClarren, Computational Nuclear Engineering and Radiological Science Using Python, Academic Press, New York, 2017.
26.
R. G. McClarren, Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers, Springer, New York, 2018.
27.
R. G. McClarren, R. P. Drake, J. E. Morel, and J. P. Holloway, Theory of radiative shocks in the mixed, optically thick-thin case, Phys. Plasmas, 17 (2010), 093301.
28.
R. G. McClarren and R. B. Lowrie, Manufactured solutions for the P1 radiation-hydrodynamics equations, J. Quant. Spectroscopy Radiative Transfer, 109 (2008), pp. 2590--2602.
29.
R. G. McClarren, D. Ryu, and R. P. Drake, A physics informed emulator for laser-driven radiating shock simulations, Reliability Engineering System Safety, 96 (2010), pp. 1194--1207.
30.
R. G. McClarren and J. G. Wohlbier, Analytic solutions for ion-electron-radiation coupling with radiation and electron diffusion, J. Quant. Spectroscopy Radiative Transfer, 112 (2010), pp. 119--130.
31.
R. B. Myneni and G. Asrar, Radiative transfer in three-dimensional atmosphere-vegetation media, J. Quant. Spectroscopy, 49 (1993), pp. 585--598.
32.
R. Sanchez and N. J. McCormick, A review of neutron transport approximations, Nuclear Sci. Engrg., 80 (1982), pp. 481--535.
33.
P. Saracco, S. Dulla, and P. Ravetto, On the spectrum of the multigroup diffusion equations, Progr. Nuclear Energy, 59 (2012), pp. 86--95.
34.
C. Schwab, E. Süli, and R. A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 777--819.
35.
C. Schwab and R. A. Todor, Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217 (2006), pp. 100--122.
36.
W. Stacey, Nuclear Reactor Physics, John Wiley & Sons, New York, 2007.
37.
O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Texts in Appl. Math., Springer New York, 2007.
38.
H. Stewart, Properties of Solutions and Eigenfunctions of Multigroup Diffusion Problems, Tech. Report 2048, Institut für Neutronenphysik und Reaktortechnik, 1974.
39.
H. Stewart, Spectral theory of heterogeneous diffusion systems, J. Math. Anal. Appl., 54 (1976), pp. 59--78.
40.
T. von Petersdorff and C. Schwab, Sparse finite element methods for operator equations with stochastic data, Appl. Math., 51 (2006), pp. 145--180.
41.
Y. Wang and J. Ragusa, Application of hp adaptivity to the multigroup diffusion equations, Nuclear Sci. Engrg., 161 (2009), pp. 22--48.
42.
W. Zwermann, A. Aures, L. Gallner, V. Hannstein, B. Krzykacz-Hausmann, K. Velkov, and J. Martinez, Nuclear data uncertainty and sensitivity analysis with XSUSA for fuel assembly depletion calculations, Nuclear Engrg. Technol., 46 (2014), pp. 343--352.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B545 - B575
ISSN (online): 1095-7197

History

Submitted: 7 May 2018
Accepted: 3 April 2019
Published online: 20 June 2019

Keywords

  1. multigroup diffusion equation
  2. uncertainty quantification
  3. sparse tensor approximation
  4. finite element method

MSC codes

  1. 82D75
  2. 65M60
  3. 35R60
  4. 65C50

Authors

Affiliations

Funding Information

Corporación de Fomento de la Producción https://doi.org/10.13039/100009465 : 201603
Fondo Nacional de Desarrollo Científico y Tecnológico https://doi.org/10.13039/501100002850 : 1171491

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media