Abstract

Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of Xenopus laevis oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially dependent rates. A theoretical analysis of reduced versions of our model predicts effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks enhances effective transport. A more complex model using parameters estimated from fluorescence microscopy data reproduces the time and spatial scales of mRNA localization observed in Xenopus oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete localization, and shows that anchoring of mRNA complexes actively transported to the cortex is most effective in achieving robust accumulation at the cortex.

Keywords

  1. intracellular transport
  2. microtubules
  3. anchoring
  4. long-time dynamics
  5. reaction-diffusion model

MSC codes

  1. 35B40
  2. 35K57
  3. 92C15
  4. 92C40

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Index of Supplementary Materials

Title of paper: Modeling microtubule-based transport and anchoring of mRNA

Authors: Maria-Veronica Ciocanel, Björn Sandstede, Samantha P Jeschonek, and Kimberly L Mowry

File: M118608_01.avi

Type: Video File

Contents: The video illustrates model-predicted localization of mRNA particles throughout a 24-hour period.

References

1.
V. B. Alarcón and R. P. Elinson, RNA anchoring in the vegetal cortex of the Xenopus oocyte, J. Cell Sci., 114 (2001), pp. 1731--1741.
2.
K. Babu, Y. Cai, S. Bahri, X. Yang, and W. Chia, Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes, Genes & Develop., 18 (2004), pp. 138--143.
3.
E. Bananis, S. Nath, K. Gordon, P. Satir, R. J. Stockert, J. W. Murray, and A. W. Wolkoff, Microtubule-dependent movement of late endocytic vesicles in vitro: Requirements for dynein and kinesin, Molecular Biol. Cell, 15 (2004), pp. 3688--3697.
4.
B. E. Becker and D. L. Gard, Visualization of the cytoskeleton in Xenopus oocytes and eggs by confocal immunofluorescence microscopy, in Xenopus Protocols, Springer, 2006, pp. 69--86.
5.
C. Bouzigues, M. Morel, A. Triller, and M. Dahan, Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 11251--11256.
6.
R. P. Brendza, L. R. Serbus, W. M. Saxton, and J. B. Duffy, Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes, Current Biol., 12 (2002), pp. 1541--1545.
7.
P. C. Bressloff and J. M. Newby, Quasi-steady-state analysis of two-dimensional random intermittent search processes, Phys. Rev. E, 83 (2011), 061139.
8.
P. C. Bressloff and B. Xu, Stochastic active-transport model of cell polarization, SIAM J. Appl. Math., 75 (2015), pp. 652--678, https://doi.org/10.1137/140990358.
9.
A. R. Chaudhary, F. Berger, C. L. Berger, and A. G. Hendricks, Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams, Traffic, 19 (2018), pp. 111--121.
10.
V. Ciocanel, J. A. Kreiling, J. A. Gagnon, K. L. Mowry, and B. Sandstede, Analysis of active transport by fluorescence recovery after photobleaching, Biophys. J., 112 (2017), pp. 1714--1725.
11.
R. Delanoue and I. Davis, Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo, Cell, 122 (2005), pp. 97--106.
12.
R. Delanoue, B. Herpers, J. Soetaert, I. Davis, and C. Rabouille, Drosophila squid/hnRNP helps dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies, Develop. Cell, 13 (2007), pp. 523--538.
13.
N. D. Derr, B. S. Goodman, R. Jungmann, A. E. Leschziner, W. M. Shih, and S. L. Reck-Peterson, Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold, Science, 338 (2012), pp. 662--665.
14.
C. Eliscovich and R. H. Singer, RNP transport in cell biology: The long and winding road, Current Opinion Cell Biol., 45 (2017), pp. 38--46.
15.
A. Friedman and H. BEI, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems, Indiana Univ. Math. J., 56 (2007), pp. 2133--2158.
16.
A. Friedman and G. Craciun, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Math. Anal., 38 (2006), pp. 741--758, https://doi.org/10.1137/050637947.
17.
J. A. Gagnon, J. A. Kreiling, E. A. Powrie, T. R. Wood, and K. L. Mowry, Directional transport is mediated by a dynein-dependent step in an RNA localization pathway, PLOS Biol., 11 (2013), e1001551.
18.
S. Ganguly, L. S. Williams, I. M. Palacios, and R. E. Goldstein, Cytoplasmic streaming in drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 15109--15114.
19.
D. L. Gard, Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: A study by confocal immunofluorescence microscopy, Develop. Biol., 143 (1991), pp. 346--362.
20.
D. L. Gard, B. J. Cha, and E. King, The organization and animal--vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules, Develop. Biol., 184 (1997), pp. 95--114.
21.
M. K. Gardner, M. Zanic, C. Gell, V. Bormuth, and J. Howard, Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe, Cell, 147 (2011), pp. 1092--1103.
22.
S. P. Gross, M. A. Welte, S. M. Block, and E. F. Wieschaus, Coordination of opposite-polarity microtubule motors, J. Cell Biol., 156 (2002), pp. 715--724.
23.
R. J. Hawkins, O. Benichou, M. Piel, and R. Voituriez, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Phys. Rev. E, 80 (2009), 040903.
24.
J. Heasman, O. Wessely, R. Langland, E. J. Craig, and D. S. Kessler, Vegetal localization of maternal mRNAs is disrupted by VegT depletion, Develop. Biol., 240 (2001), pp. 377--386.
25.
A. G. Hendricks, E. L. Holzbaur, and Y. E. Goldman, Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 18447--18452.
26.
A. G. Hendricks, E. Perlson, J. L. Ross, H. W. Schroeder III, M. Tokito, and E. L. Holzbaur, Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport, Current Biol., 20 (2010), pp. 697--702.
27.
N. Hirokawa and R. Takemura, Molecular motors and mechanisms of directional transport in neurons, Nature Rev. Neurosci., 6 (2005), pp. 201--214.
28.
J. Januschke, L. Gervais, S. Dass, J. A. Kaltschmidt, H. Lopez-Schier, D. S. Johnston, A. H. Brand, S. Roth, and A. Guichet, Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation, Current Biol., 12 (2002), pp. 1971--1981.
29.
S. Jeschonek, ImageJ Macro, available at ŭlhttps://github.com/sjeschonek.
30.
M. Kloc and L. D. Etkin, Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA, Science, 265 (1994), pp. 1101--1103.
31.
M. Kloc and L. D. Etkin, Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes, Development, 121 (1995), pp. 287--297.
32.
M. Kloc, K. Wilk, D. Vargas, Y. Shirato, S. Bilinski, and L. D. Etkin, Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes, Development, 132 (2005), pp. 3445--3457.
33.
M. W. Klymkowsky, L. A. Maynell, and C. Nislow, Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1, J. Cell Biol., 114 (1991), pp. 787--797.
34.
V. Levi, A. S. Serpinskaya, E. Gratton, and V. Gelfand, Organelle transport along microtubules in Xenopus melanophores: Evidence for cooperation between multiple motors, Biophys. J., 90 (2006), pp. 318--327.
35.
L. A. Ligon, M. Tokito, J. M. Finklestein, F. E. Grossman, and E. L. Holzbaur, A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity, J. Biol. Chem., 279 (2004), pp. 19201--19208.
36.
C. Medioni, K. Mowry, and F. Besse, Principles and roles of mRNA localization in animal development, Development, 139 (2012), pp. 3263--3276.
37.
T. J. Messitt, J. A. Gagnon, J. A. Kreiling, C. A. Pratt, Y. J. Yoon, and K. L. Mowry, Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes, Develop. Cell, 15 (2008), pp. 426--436.
38.
R. Milo and R. Phillips, Cell Biology by the Numbers, Garland Science, 2016.
39.
J. Newby and P. C. Bressloff, Random intermittent search and the tug-of-war model of motor-driven transport, J. Statist. Mech. Theory Exper., 2010 (2010), P04014.
40.
J. M. Newby and P. C. Bressloff, Quasi-steady state reduction of molecular motor-based models of directed intermittent search, Bull. Math. Biol., 72 (2010), pp. 1840--1866.
41.
E. A. Powrie, M.-V. Ciocanel, J. A. Kreiling, J. A. Gagnon, B. Sandstede, and K. L. Mowry, Using in vivo imaging to measure RNA mobility in Xenopus laevis oocytes, Methods, 98 (2015), pp. 60--65.
42.
M. C. Reed, S. Venakides, and J. J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Appl. Math., 50 (1990), pp. 167--180, https://doi.org/10.1137/0150011.
43.
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid et al., Fiji: An open-source platform for biological-image analysis, Nature Methods, 9 (2012), pp. 676--682.
44.
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9 (2012), pp. 671--675.
45.
E. Schulze and M. Kirschner, Microtubule dynamics in interphase cells., J. Cell Biol., 102 (1986), pp. 1020--1031.
46.
R. Singh and A. Kumar, Multiplication operators and composition operators with closed ranges, Bull. Austral. Math. Soc., 16 (1977), pp. 247--252.
47.
T. Tanaka and A. Nakamura, Oskar-induced endocytic activation and actin remodeling for anchorage of the Drosophila germ plasm, Bioarchitecture, 1 (2011), pp. 122--126.
48.
P. K. Trong, H. Doerflinger, J. Dunkel, D. St Johnston, and R. E. Goldstein, Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis, eLife, 4 (2015), e06088.
49.
P. K. Trong, J. Guck, and R. E. Goldstein, Coupling of active motion and advection shapes intracellular cargo transport, Phys. Rev. Lett., 109 (2012), 028104.
50.
V. Trovisco, K. Belaya, D. Nashchekin, U. Irion, G. Sirinakis, R. Butler, J. J. Lee, E. R. Gavis, and D. St Johnston, Bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring, eLife, 5 (2016), e17537.
51.
A. E. Twelvetrees, S. Pernigo, A. Sanger, P. Guedes-Dias, G. Schiavo, R. A. Steiner, M. P. Dodding, and E. L. Holzbaur, The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1, Neuron, 90 (2016), pp. 1000--1015.
52.
R. D. Vale, F. Malik, and D. Brown, Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins, J. Cell Biol., 119 (1992), pp. 1589--1596.
53.
N. F. Vanzo and A. Ephrussi, Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte, Development, 129 (2002), pp. 3705--3714.
54.
K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson, 2007.
55.
J. K. Yisraeli, VICKZ proteins: A multi-talented family of regulatory RNA-binding proteins, Biol. Cell, 97 (2005), pp. 87--96.
56.
J. K. Yisraeli, S. Sokol, and D. Melton, A two-step model for the localization of maternal mRNA in Xenopus oocytes: Involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA, Development, 108 (1990), pp. 289--298.
57.
W.-M. Zhao, C. Jiang, T. T. Kroll, and P. W. Huber, A proline-rich protein binds to the localization element of Xenopus Vg1 mRNA and to ligands involved in actin polymerization, EMBO J., 20 (2001), pp. 2315--2325.
58.
V. L. Zimyanin, K. Belaya, J. Pecreaux, M. J. Gilchrist, A. Clark, I. Davis, and D. St Johnston, In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization, Cell, 134 (2008), pp. 843--853.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 2855 - 2881
ISSN (online): 1536-0040

History

Submitted: 8 May 2018
Accepted: 26 October 2018
Published online: 18 December 2018

Keywords

  1. intracellular transport
  2. microtubules
  3. anchoring
  4. long-time dynamics
  5. reaction-diffusion model

MSC codes

  1. 35B40
  2. 35K57
  3. 92C15
  4. 92C40

Authors

Affiliations

Funding Information

Division of Mathematical Sciences https://doi.org/10.13039/100000121 : 1440386
National Science Foundation https://doi.org/10.13039/100000001 : 1714429, 1740741, R01GM071049

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

On May 28, 2024, our site will enter Read Only mode for a limited time in order to complete a platform upgrade. As a result, the following functions will be temporarily unavailable: registering new user accounts, any updates to existing user accounts, access token activations, and shopping cart transactions. Contact [email protected] with any questions.