Full Access

Equivalence of the Erlang-Distributed SEIR Epidemic Model and the Renewal Equation

Most compartmental epidemic models can be represented using the renewal equation. The value of the renewal equation is not widely appreciated in the epidemiological modelling community, perhaps because its equivalence to standard models has not been presented rigorously in nontrivial cases. Here, we provide analytical expressions for the intrinsic generation-interval distribution that must be used in the renewal equation in order to yield epidemic dynamics that are identical to those of the susceptible-exposed-infectious-recovered (SEIR) compartmental model with Erlang-distributed latent and infectious periods. This class of models includes the standard (exponentially distributed) SIR and SEIR models as special cases.

  • 1.  D. Anderson and  R. Watson , On the spread of a disease with gamma distributed latent and infectious periods , Biometrika , 67 ( 1980 ), pp. 191 -- 198 . CrossrefISIGoogle Scholar

  • 2.  R. M. Anderson and  R. M. May , Infectious Diseases of Humans - Dynamics and Control , Oxford University Press , New York , 1991 . Google Scholar

  • 3.  J. Arino and  P. van den Driessche , Time delays in epidemic models - modeling and numerical considerations , in Delay Differential Equations and Applications , Springer , New York , 2006 , pp. 539 -- 578 . Google Scholar

  • 4.  N. T. . Bailey, Some stochastic models for small epidemics in large populations , Appl. Statist. , 13 ( 1964 ), pp. 9 -- 19 . CrossrefGoogle Scholar

  • 5.  D. Breda O. Diekmann W. F. de Graaf A. Pugliese and  R. Vermiglio , On the formulation of epidemic models (an appraisal of Kermack and McKendrick) , J. Biol. Dyn. , 6 ( 2012 ), pp. 103 -- 117 . CrossrefISIGoogle Scholar

  • 6.  S. Butler and  P. Karasik , A note on nested sums , J. Integer Seq. , 13 ( 2010 ), 10 .4.4. Google Scholar

  • 7.  D. Champredon and  J. Dushoff , Intrinsic and realized generation intervals in infectious-disease transmission , Roy. Soc. Lond. Proc. Ser. Biol. Sci. , 282 ( 2015 ), 20152026 . CrossrefISIGoogle Scholar

  • 8.  D. Champredon M. Li B. Bolker and  J. Dushoff , Two approaches to forecast Ebola synthetic epidemics , Epidemics , 22 ( 2018 ), pp. 36 -- 42 . CrossrefISIGoogle Scholar

  • 9.  O. Diekmann , Limiting behaviour in an epidemic model , Nonlinear Anal. , 1 ( 1977 ), pp. 459 -- 470 . CrossrefGoogle Scholar

  • 10.  O. Diekmann J. Heesterbeek and  J. Metz , On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations , J. Math. Biol. , 28 ( 1990 ), pp. 365 -- 382 . CrossrefISIGoogle Scholar

  • 11.  L. Euler , Recherches générales sur la mortalité et la multiplication du genre humain , Mém. Acad. R. Sci. Belles Lett. , 16 ( 1760 ), pp. 144 -- 164 . Google Scholar

  • 12.  D. Fargue , Réducibilité des systèmes héréditaires , Int. J. Nonlinear Mech. , 9 ( 1974 ), pp. 331 -- 338 . CrossrefGoogle Scholar

  • 13.  Z. Feng and  H. Thieme , Endemic models with arbitrarily distributed periods of infection. I: Fundamental properties of the model , SIAM J. Appl. Math. , 61 ( 2000 ), pp. 803 -- 833 , https://doi.org/10.1137/S0036139998347834. LinkISIGoogle Scholar

  • 14.  Z. Feng D. Xu and  H. Zhao , Epidemiological models with non-exponentially distributed disease stages and applications to disease control , Bull. Math. Biol. , 69 ( 2007 ), pp. 1511 -- 1536 . CrossrefISIGoogle Scholar

  • 15.  P. E. . Fine, The interval between successive cases of an infectious disease , Am. J. Epidemiology , 158 ( 2003 ), pp. 1039 -- 1047 . CrossrefISIGoogle Scholar

  • 16.  J. L. . Gielen, A stochastic model for epidemics based on the renewal equation , J. Biol. Syst. , 08 ( 2000 ), pp. 1 -- 20 . CrossrefISIGoogle Scholar

  • 17.  H. B. Guo and  M. . Li, Global dynamics of a staged progression model for infectious diseases , Math. Biosci. Eng. , 3 ( 2006 ), pp. 513 -- 525 . CrossrefISIGoogle Scholar

  • 18.  P. J. Hurtado A. S. Kirosingh and  Generalizations “Linear Chain Trick”: Incorporating More Flexible Dwell Time Distributions into Mean Field ODE Models, preprint, https://arxiv.org/abs/1808.07571 , 2018 . , https://arxiv.org/abs/1808.07571. Google Scholar

  • 19.  W. O. Kermack and  A. G. McKendrick , A contribution to the mathematical theory of epidemics , Proc. Roy. Soc. London. Ser. A. , 115 ( 1927 ), pp. 700 -- 721 . CrossrefGoogle Scholar

  • 20.  O. Krylova and  D. J. . Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics , J. Royal Soc. Interface , 10 ( 2013 ), 20130098 . CrossrefISIGoogle Scholar

  • 21.  A. L. Lloyd , Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics , Theoret. Popul. Biol ,, 60 ( 2001 ), pp. 59 -- 71 . CrossrefISIGoogle Scholar

  • 22.  A. J. Lotka , Relation between birth rates and death rates , Science , 26 ( 1907 ), pp. 21 -- 22 . CrossrefGoogle Scholar

  • 23.  J. A. . Metz, The epidemic in a closed population with all susceptible equally vulnerable; some results for large susceptible populations and small initial infections , Acta Biotheoretica , 27 ( 1978 ), pp. 75 -- 123 . CrossrefISIGoogle Scholar

  • 24.  NIST Mathematical Functions , National Institute of Standards and Technology ( NIST) and Cambridge University Press , New York , 2010 , https://dlmf.nist.gov/. Google Scholar

  • 25.  P. van den Driessche and  J. Watmough , Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission , Math. Biosci. , 180 ( 2002 ), pp. 29 -- 48 . CrossrefISIGoogle Scholar

  • 26.  J. Wallinga and  M. Lipsitch , How generation intervals shape the relationship between growth rates and reproductive numbers , Roy. Soc. Lond. Proc. Ser. Biol. Sci. , 274 ( 2007 ), pp. 599 -- 604 . CrossrefISIGoogle Scholar

  • 27.  H. J. Wearing P. Rohani and  M. J. Keeling , Appropriate models for the management of infectious diseases , PLoS Med. , 2 ( 2005 ), e174 . CrossrefISIGoogle Scholar

  • 28.  WHO Ebola Response Team , Ebola virus disease in West Africa --- The first \textup9 months of the epidemic and forward projections , N. Engl. J. Med. , 371 ( 2014 ), pp. 1481 -- 1495 . CrossrefISIGoogle Scholar

  • 29.  A . Wörz-Busekros, Global stability in ecological systems with continuous time delay , SIAM J. Appl. Math. , 35 ( 1978 ), pp. 123 -- 134 , https://doi.org/10.1137/0135011. LinkISIGoogle Scholar