Quasi-Variational Inequality Problems over Product Sets with Quasi-monotone Operators

Quasi-variational inequalities are variational inequalities in which the constraint map depends on the current point. Due to this characteristic, specific proofs have been built to prove adapted existence results. Semicontinuity and generalized monotonicity are assumed and many efforts have been made in the last decades to use the weakest concepts. In the case of quasi-variational inequalities defined on a product of spaces, the existence statements in the literature require pseudomonotonicity of the operator, a hypothesis that is too strong for many applications, in particular in economics. On the other hand, the current minimal hypotheses for existence results for general quasi-variational inequalities are quasi-monotonicity and local upper sign-continuity. But since the product of quasi-monotone (respectively, locally upper sign-continuous) operators is not in general quasi-monotone (respectively, locally upper sign-continuous), it is thus quite difficult to use these general-type existence result in the quasi-variational inequalities defined on a product of spaces. In this work we prove, in an infinite-dimensional setting, several existence results for product-type quasi-variational inequalities by only assuming the quasi-monotonicity and local upper sign-continuity of the component operators. Our technique of proof is strongly based on an innovative stability result and on the new concept of net-lower sign-continuity.

  • 1.  M. Ait Mansour and  D. Aussel , Quasimonotone variational inequalities and quasiconvex programming: Quantitative stability , Pac. J. Optim. , 2 ( 2006 ), pp. 611 -- 626 . Google Scholar

  • 2.  M. Ait Mansour and  D. Aussel , Quasimonotone variational inequalities and quasiconvex programming: Qualitative stability , J. Convex Anal. , 15 ( 2008 ), pp. 459 -- 472 . ISIGoogle Scholar

  • 3.  E. Allevi A. Gnudi and  I. V. Konnov , Generalized vector variational inequalities over product sets , Nonlinear Anal. , 47 ( 2001 ), pp. 573 -- 582 . CrossrefISIGoogle Scholar

  • 4.  E. Allevi A. Gnudi and  I. V. Konnov , Generalized vector variational inequalities over countable product of sets , J. Global Optim. , 30 ( 2004 ), pp. 155 -- 167 . CrossrefISIGoogle Scholar

  • 5.  Q. H. Ansari W. K. Chan and  X. Q. Yang , Weighted quasi-variational inequalities and constrained Nash equilibrium problems , Taiwanese J. Math. , 10 ( 2006 ), pp. 361 -- 380 . CrossrefISIGoogle Scholar

  • 6.  Q. H. Ansari and  Z. Khan , Relatively B-pseudomonotone variational inequalities over product of sets , J. Inequal. Pure Appl. Math. , 4 ( 2003 ), Article 6 . Google Scholar

  • 7.  Q. H. Ansari and  Z. Khan , Densely relative pseudomonotone variational inequalities over product of sets , J. Nonlinear Convex Anal. , 7 ( 2006 ), pp. 179 -- 188 . ISIGoogle Scholar

  • 8.  Q. H. Ansari S. Schaible and  J. C. Yao , Generalized vector quasi-variational inequality problems over product sets , J. Global Optim. , 32 ( 2005 ), pp. 437 -- 449 . CrossrefISIGoogle Scholar

  • 9.  J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems Control Found. Appl. 2, Birkhäuser, Boston, MA, 1990.Google Scholar

  • 10.  D. Aussel , New developments in quasiconvex optimization, in Fixed Point Theory, Variational Analysis, and Optimization, CRC Press , Boca Raton, FL , 2014 , pp. 171 -- 205 . Google Scholar

  • 11.  D. Aussel and  J. Cotrina , Semicontinuity of the solution map of quasivariational inequalities , J. Global Optim. , 50 ( 2011 ), pp. 93 -- 105 . CrossrefISIGoogle Scholar

  • 12.  D. Aussel and  J. Cotrina , Quasimonotone quasivariational inequalities: Existence results and applications , J. Optim. Theory Appl. , 158 ( 2013 ), pp. 637 -- 652 . CrossrefISIGoogle Scholar

  • 13.  D. Aussel and  J. Cotrina , Stability of quasimonotone variational inequality under sign-continuity , J. Optim. Theory Appl. , 158 ( 2013 ), pp. 653 -- 667 . CrossrefISIGoogle Scholar

  • 14.  D. Aussel and  N. Hadjisavvas , On quasimonotone variational inequalities , J. Optim. Theory Appl. , 121 ( 2004 ), pp. 445 -- 450 . CrossrefISIGoogle Scholar

  • 15.  G. Beer, Topologies on Closed and Closed Convex Sets, Math. Appl. 268, Springer, Dordrecht, 1993.Google Scholar

  • 16.  M. Beldiman and  V. Preda , Some existence results for a class of relatively B-pseudomonotone variational inequalities over product sets , Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. , 8 ( 2007 ), pp. 11 -- 17 . Google Scholar

  • 17.  F. E. Browder , The fixed point theory of multi-valued mappings in topological vector spaces , Math. Ann. , 177 ( 1968 ), pp. 283 -- 301 . CrossrefISIGoogle Scholar

  • 18.  J.-P. Crouzeix, J. E. Martinez Legaz, and M. Volle, eds., Generalized Convexity, Generalized Monotonicity: Recent Results, Nonconvex Optim. Appl. 77, Springer, New York, 1998.Google Scholar

  • 19.  A. Daniilidis and  N. Hadjisavvas , Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions , J. Optim. Theory Appl. , 102 ( 1999 ), pp. 525 -- 536 . CrossrefISIGoogle Scholar

  • 20.  J. Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966.Google Scholar

  • 21.  F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, 4OR, 5 (2007), pp. 173--210.Google Scholar

  • 22.  F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2003.Google Scholar

  • 23.  F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. II, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2003.Google Scholar

  • 24.  N. Hadjisavvas , Continuity and maximality properties of pseudomonotone operators , J. Convex Anal. , 10 ( 2003 ), pp. 465 -- 475 . ISIGoogle Scholar

  • 25.  P. Hartman and  G. Stampacchia , On some non-linear elliptic differential-functional equations , Acta Math. , 115 ( 1966 ), pp. 271 -- 310 . CrossrefISIGoogle Scholar

  • 26.  T. Ichiishi, Game Theory for Economic Analysis, Econ. Theory, Econometrics Math. Econom., Academic Press, New York, 1983.Google Scholar

  • 27.  D. Inoan , Existence and behavior of solutions for variational inequalities over products of sets , Math. Inequal. Appl. , 12 ( 2009 ), pp. 753 -- 762 . Google Scholar

  • 28.  I. V. Konnov , Relatively monotone variational inequalities over product sets , Oper. Res. Lett. , 28 ( 2001 ), pp. 21 -- 26 . CrossrefISIGoogle Scholar

  • 29.  G. K. Pedersen, Analysis Now, Grad. Texts in Math. 118, Springer, New York, 1989.Google Scholar

  • 30.  H. H. Schaefer and M. P. Wolff, Topological Vector Spaces, 2nd ed., Grad. Texts in Math. 3, Springer, New York, 1999.Google Scholar

  • 31.  M. Sion , On general minimax theorems , Pac. J. Math. , 8 ( 1958 ), pp. 171 -- 176 . CrossrefGoogle Scholar

  • 32.  G. Stampacchia , Formes bilinéaires coercitives sur les ensembles convexes , C. R. Acad. Sci. Paris , 258 ( 1964 ), pp. 4413 -- 4416 . Google Scholar

  • 33.  N. X. Tan , Quasivariational inequalities in topological linear locally convex Hausdorff spaces , Math. Nachr. , 122 ( 1985 ), pp. 231 -- 245 . CrossrefISIGoogle Scholar

  • 34.  Q. Zhao S. Xu T. Peng and  X. Huang , Weighted variational inequalities in normed spaces , Optimization , 59 ( 2010 ), pp. 501 -- 514 . CrossrefISIGoogle Scholar