Abstract

Local Fourier analysis is a commonly used tool for the analysis of multigrid and other multilevel algorithms, providing both insight into observed convergence rates and predictive analysis of the performance of many algorithms. In this paper, for the first time, we adapt local Fourier analysis to examine variants of two- and three-level balancing domain decomposition by constraints (BDDC) algorithms, to better understand the eigenvalue distributions and condition number bounds on these preconditioned operators. This adaptation is based on a modified choice of basis for the space of Fourier harmonics that greatly simplifies the application of local Fourier analysis in this setting. The local Fourier analysis is validated by considering the two-dimensional Laplacian and predicting the condition numbers of the preconditioned operators with different sizes of subdomains. Several variants are analyzed, showing that the two- and three-level performance of the “lumped” variant can be greatly improved when used in multiplicative combination with a weighted diagonal scaling preconditioner, with weight optimized through the use of local Fourier analysis.

Keywords

  1. BDDC
  2. domain decomposition
  3. local Fourier analysis
  4. multiplicative methods

MSC codes

  1. 65N22
  2. 65N55
  3. 65F08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Badia, A. F. Martín, and J. Principe, FEMPAR: An object-oriented parallel finite element framework, Arch. Comput. Methods Eng., 25 (2018), pp. 195--271.
2.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc users manual: Revision 3.10, Techncal report ANL-95/11 - Rev 3.10, Argonne National Laboratory, Argonne, IL, 2018.
3.
M. Bolten and H. Rittich, Fourier analysis of periodic stencils in multigrid methods, SIAM J. Sci. Comput., 40 (2018), pp. A1642--A1668.
4.
T. Boonen, J. Van Lent, and S. Vandewalle, Local Fourier analysis of multigrid for the curl-curl equation, SIAM J. Sci. Comput., 30 (2008), pp. 1730--1755.
5.
J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57 (1991), pp. 1--21.
6.
A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333--390.
7.
S. C. Brenner, E.-H. Park, and L.-Y. Sung, A BDDC preconditioner for a symmetric interior penalty Galerkin method, Electron. Trans. Numer. Anal., 46 (2017), pp. 190--214.
8.
S. C. Brenner and L.-Y. Sung, BDDC and FETI-DP without matrices or vectors, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1429--1435.
9.
W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, 2000.
10.
C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25 (2003), pp. 246--258.
11.
C. R. Dohrmann, Preconditioning of saddle point systems by substructuring and a penalty approach, in Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 53--64.
12.
C. R. Dohrmann and O. B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional $H({curl})$ problems, Commun. Pure Appl. Math., 69 (2016), pp. 745--770.
13.
V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods: Algorithms, theory, and parallel implementation, SIAM, Philadelphia, 2015.
14.
M. Dryja, J. Galvis, and M. Sarkis, BDDC methods for discontinuous Galerkin discretization of elliptic problems, J. Complexity, 23 (2007), pp. 715--739.
15.
M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, 1990, pp. 3--21.
16.
M. Dryja and O. B. Widlund, A FETI-DP method for a mortar discretization of elliptic problems, Recent Developments in Domain Description Methods, Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin, 2002, pp. 41--52.
17.
C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: A dual--primal unified FETI method Part I: A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg., 50 (2001), pp. 1523--1544.
18.
S. Friedhoff and S. MacLachlan, A generalized predictive analysis tool for multigrid methods, Numer. Linear Algebra Appl., 22 (2015), pp. 618--647.
19.
S. Friedhoff, S. MacLachlan, and C. Börgers, Local Fourier analysis of space-time relaxation and multigrid schemes, SIAM J. Sci. Comput., 35 (2013), pp. S250--S276.
20.
M. J. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38--60.
21.
P. Kumar, C. Rodrigo, F. J. Gaspar, and C. W. Oosterlee, On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients, SIAM J. Sci. Comput., 41 (2019), pp. A1385--A1413.
22.
C.-C. J. Kuo and B. C. Levy, Two-color Fourier analysis of the multigrid method with red-black Gauss-Seidel smoothing, Appl. Math. Comput., 29 (1989), pp. 69--87.
23.
J. Li, A dual-primal FETI method for incompressible Stokes equations, Numer. Math., 102 (2005), pp. 257--275.
24.
J. Li and O. Widlund, BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 2432--2455.
25.
J. Li and O. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 250--271.
26.
J. Li and O. Widlund, A BDDC preconditioner for saddle point problems, in Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin, 2007, pp. 413--420.
27.
J. Li and O. Widlund, On the use of inexact subdomain solvers for BDDC algorithms, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1415--1428.
28.
S. P. MacLachlan and C. W. Oosterlee, Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs, Numer. Linear Algebra Appl., 18 (2011), pp. 751--774.
29.
J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639--659.
30.
J. Mandel, C. R. Dohrmann, and R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math., 54 (2005), pp. 167--193.
31.
J. Mandel, B. r. Sousedík, and C. R. Dohrmann, Multispace and multilevel BDDC, Computing, 83 (2008), pp. 55--85.
32.
L. F. Pavarino, O. B. Widlund, and S. Zampini, BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions, SIAM J. Sci. Comput., 32 (2010), pp. 3604--3626.
33.
C. Rodrigo, F. J. Gaspar, and F. J. Lisbona, Multicolor Fourier analysis of the multigrid method for quadratic FEM discretizations, Appl. Math. Comput., 218 (2012), pp. 11182--11195.
34.
B. Sousedík, J. Šístek, and J. Mandel, Adaptive-multilevel BDDC and its parallel implementation, Computing, 95 (2013), pp. 1087--1119.
35.
K. Stüben and U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, in Multigrid Methods, Lecture Notes in Math. 960, 1982, pp. 1--176.
36.
A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005.
37.
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, CA, 2001.
38.
X. Tu, Domain Decomposition Algorithms: Methods with Three Levels and for Flow in Porous Media, Ph.D. thesis, New York University, New York, 2006.
39.
X. Tu, Three-level BDDC in three dimensions, SIAM J. Sci. Comput., 29 (2007), pp. 1759--1780.
40.
X. Tu, Three-level BDDC in two dimensions, Internat. J. Numer. Methods Engrg., 69 (2007), pp. 33--59.
41.
P. Wesseling, An introduction to multigrid methods, Pure Appl. Math., Wiley, Chichester, England, 1992.
42.
R. Wienands and W. Joppich, Practical Fourier Analysis for Multigrid Methods, CRC Press, Boca Raton, FL, 2004.
43.
S. Zampini, PCBDDC: A class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput., 38 (2016), pp. S282--S306.
44.
S. Zampini and X. Tu, Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media, SIAM J. Sci. Comput., 39 (2017), pp. A1389--A1415.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S346 - S369
ISSN (online): 1095-7197

History

Submitted: 31 May 2018
Accepted: 18 June 2019
Published online: 29 October 2019

Keywords

  1. BDDC
  2. domain decomposition
  3. local Fourier analysis
  4. multiplicative methods

MSC codes

  1. 65N22
  2. 65N55
  3. 65F08

Authors

Affiliations

Funding Information

Office of Science https://doi.org/10.13039/100006132 : DE-SC0016140
Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media