Abstract

We propose a general technique related to the polytopal Sperner lemma for proving old and new multilabeled versions of Sperner's lemma. A notable application of this technique yields a cake-cutting theorem where the number of players and the number of pieces can be independently chosen. We also prove multilabeled versions of Fan's lemma, a combinatorial analogue of the Borsuk--Ulam theorem, and exhibit applications to fair division and graph coloring.

Keywords

  1. cake-cutting
  2. consensus-halving
  3. Fan's lemma
  4. graph coloring
  5. labelings
  6. Sperner's lemma

MSC codes

  1. Primary
  2. 55M20; Secondary
  3. 54H25
  4. 05E45
  5. 91B32

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Alishahi, Colorful subhypergraphs in uniform hypergraphs, Electron. J. Combin., 24 (2017), P1.23.
2.
M. Alishahi, H. Hajiabolhassan, and F. Meunier, Strengthening topological colorful results for graphs, European J. Combin., 64 (2017), pp. 27--44.
3.
N. Alon, Splitting necklaces, Adv. Math., 63 (1987), pp. 247--253.
4.
N. Alon and D. B. West, The Borsuk-Ulam theorem and bisection of necklaces, Proc. Amer. Math. Soc., 98 (1986), pp. 623--628.
5.
M. Asada, F. Frick, V. Pisharody, M. Polevy, D. Stoner, L. H. Tsang, and Z. Wellner, Fair division and generalizations of Sperner- and KKM-type results, SIAM J. Discrete Math., 32 (2018), pp. 591--610, https://doi.org/10.1137/17M1116210.
6.
E. Babson, Meunier Conjecture, preprint, https://arxiv.org/abs/1209.0102, 2012.
7.
P. Bacon, Equivalent formulations of the Borsuk-Ulam theorem, Canad. J. Math., 18 (1966), pp. 492--502.
8.
R. B. Bapat, A constructive proof of a permutation-based generalization of Sperner's lemma, Math. Program., 44 (1989), pp. 113--120.
9.
A. Brown and S. S. Cairns, Strengthening of Sperner's lemma applied to homology theory, Proc. Natl. Acad. Sci. USA, 47 (1961), pp. 113--114.
10.
J. A. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc., to appear.
11.
J. A. De Loera, E. Peterson, and F. E. Su, A polytopal generalization of Sperner's lemma, J. Combin. Theory Ser. A, 100 (2002), pp. 1--26.
12.
M. De Longueville and R. T. Živaljević, Splitting multidimensional necklaces, Adv. Math., 218 (2008), pp. 926--939.
13.
K. Fan, A generalization of Tucker's combinatorial lemma with topological applications, Ann. of Math. (2), 56 (1952), pp. 431--437.
14.
F. Frick, K. Houston-Edwards, and F. Meunier, Achieving rental harmony with a secretive roommate, Amer. Math. Monthly, 126 (2019), pp. 18--32.
15.
D. Gale, Equilibrium in a discrete exchange economy with money, Internat. J. Game Theory, 13 (1984), pp. 61--64.
16.
C. H. Goldberg and D. B. West, Bisection of circle colorings, SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 93--106, https://doi.org/10.1137/0606010.
17.
C. R. Hobby and J. R. Rice, A moment problem in ${L}_1$ approximation, Proc. Amer. Math. Soc., 16 (1965), pp. 665--670.
18.
S.-N. Lee and M.-H. Shih, A counting lemma and multiple combinatorial Stokes' theorem, European J. Combin., 19 (1998), pp. 969--979.
19.
L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A, 25 (1978), pp. 319--324.
20.
K. L. Nyman and F. E. Su, A Borsuk-Ulam equivalent that directly implies Sperner's lemma, Amer. Math. Monthly, 120 (2013), pp. 346--354.
21.
D. Pálvölgyi, Combinatorial necklace splitting, Electron. J. Combin., 16 (2009), R79.
22.
T. Prescott and F. E. Su, A constructive proof of Ky Fan's generalization of Tucker's lemma, J. Combin. Theory Ser. A, 111 (2005), pp. 257--265.
23.
F. W. Simmons and F. E. Su, Consensus-halving via theorems of Borsuk-Ulam and Tucker, Math. Social Sci., 45 (2003), pp. 15--25.
24.
G. Simonyi, Necklace bisection with one cut less than needed, Electron. J. Combin., 15 (2008), N16.
25.
G. Simonyi, C. Tardif, and A. Zsbán, Colourful theorems and indices of homomorphism complexes, Electron. J. Combin., 20 (2013), P10.
26.
G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica, 26 (2006), pp. 587--626.
27.
W. Stromquist, How to cut a cake fairly, Amer. Math. Monthly, 87 (1980), pp. 640--644.
28.
F. E. Su, Rental harmony: Sperner's lemma in fair division, Amer. Math. Monthly, 106 (1999), pp. 930--942.
29.
A. W. Tucker, Some topological properties of disk and sphere, in Proceedings of the First Canadian Mathematical Congress, Montreal, Canada, 1945, pp. 285--309.
30.
D. R. Woodall, Dividing a cake fairly, J. Math. Anal. Appl., 78 (1980), pp. 233--247.
31.
R. T. Živaljević, Oriented matroids and Ky Fan's theorem, Combinatorica, 30 (2010), pp. 471--484.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 391 - 411
ISSN (online): 2470-6566

History

Submitted: 6 June 2018
Accepted: 23 April 2019
Published online: 9 July 2019

Keywords

  1. cake-cutting
  2. consensus-halving
  3. Fan's lemma
  4. graph coloring
  5. labelings
  6. Sperner's lemma

MSC codes

  1. Primary
  2. 55M20; Secondary
  3. 54H25
  4. 05E45
  5. 91B32

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1440140

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media