Abstract

In the context of linear time-invariant systems, the McMillan degree prescribes the smallest possible dimension of a system that reproduces the observed dynamics. When these observations take the form of impulse response measurements where the system evolves without input from an unknown initial condition, a result of Ho and Kalman reveals the McMillan degree as the rank of a Hankel matrix built from these measurements. Unfortunately, using this result in experimental practice is challenging as measurements are invariably contaminated by noise and hence the Hankel matrix will almost surely be full rank. Hence practitioners estimate the rank of this matrix---and thus the McMillan degree---by manually setting a threshold separating large singular values corresponding to the nonzero singular values of the noise-free Hankel matrix and small singular values corresponding to perturbation of zero singular values of the noise-free Hankel matrix. Here we replace this manual threshold with a threshold guided by Weyl's theorem. Specifically, assuming measurements are perturbed by additive Gaussian noise we construct a probabilistic upper bound on how much the singular values of the noise-free Hankel matrix can be perturbed; this provides a conservative threshold for estimating the rank and hence the McMillan degree. This result follows from a new probabilistic bound on the 2-norm of a random Hankel matrix with normally distributed entries. Unlike existing results for random Hankel matrices, this bound features no unknown constants and, moreover, is within a small factor of the empirically observed bound. This bound on the McMillan degree provides an inexpensive alternative to more general model order selection techniques such as the Akaike information criteria.

Keywords

  1. McMillan degree
  2. Hankel matrix
  3. model order selection
  4. random matrix

MSC codes

  1. 15B52
  2. 60B20
  3. 62B10
  4. 70J10
  5. 93E12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Adamczak, A few remarks on the operator norm of random Toeplitz matrices, J. Theoret. Probab., 23 (2010), pp. 85--108, https://doi.org/10.1007/s10959-008-0201-7.
2.
H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control, 19 (1974), https://doi.org/10.1109/TAC.1974.1100705.
3.
Z. D. Bai, Methodologies in the spectral analysis of large dimensional random matrices, a review, Statist. Sinica, 9 (1999), pp. 611--677.
4.
H. Barkhuijsen, R. de Beer, and D. van Ormondt, Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals, J. Magn. Reson., 73 (1987), pp. 553--557, https://doi.org/10.1016/0022-2364(87)90023-0.
5.
W. Bryc, A. Dembo, and T. Jiang, Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab., 34 (2006), pp. 1--38, https://doi.org/10.1214/009117905000000495.
6.
K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference, Springer, New York, 2002, https://doi.org/10.1007/b97636.
7.
Y. Chahlaoui and P. V. Dooren, A Collection of Benchmark Examples for Model Reduction of Linear Time Invariant Dynamical Systems, Technical Report 2, SLICOT, 2002.
8.
M. T. Chu and M. M. Lin, On the finite rank and finite-dimensional representation of bounded semi-infinite hankel operators, IMA J. Numer. Anal., 35 (2015), pp. 1256--1276, https://doi.org/10.1093/imanum/dru001.
9.
P. de Groen and B. de Moor, The fit of a sum of exponentials to noisy data, J. Comput. Appl. Math., 20 (1987), pp. 175--187, https://doi.org/10.1016/0377-0427(87)90135-x.
10.
P. V. Dooren, K. A. Gallivan, and P.-A. Absil, $\mathcal{H}_2$-optimal model reduction with higher-order poles, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2738--2753, https://doi.org/10.1137/080731591.
11.
G. C. Goodwin and R. L. Payne, Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, 1977, https://doi.org/10.1016/s0076-5392(08)x6188-0.
12.
B. L. Ho and R. E. Kalman, Effective construction of linear state-variable models from input/output functions, Regelungstechnik, 14 (1966), pp. 545--592, https://doi.org/10.1524/auto.1966.14.112.545.
13.
J. N. Holt and R. J. Antill, Determining the number of terms in a Prony algorithm exponential fit, Math. Biosci., 36 (1977), pp. 319--332, https://doi.org/10.1016/0025-5564(77)90054-2.
14.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985, https://doi.org/10.1017/CBO9780511810817.
15.
J.-N. Juang and R. S. Pappa, An eigensystem realization algorithm for modal parameter identification and model redunction, J. Guid. Control Dynam., 8 (1985), pp. 620--627, https://doi.org/10.2514/3.20031.
16.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User's Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998, https://doi.org/10.1137/1.9780898719628.
17.
L. Ljung, System Identification: Theory for the User, 2nd ed., Prentice Hall Inform. System Sci. Ser., Prentice Hall, Upper Saddle River, NJ, 1999.
18.
B. McMillan, Introduction to formal realizability theory I, Bell Syst. Tech. J., 31 (1952), pp. 217--279, https://doi.org/10.1002/j.1538-7305.1952.tb01383.x.
19.
B. McMillan, Introduction to formal realizability theory II, Bell Syst. Tech. J., 31 (1952), pp. 541--600, https://doi.org/10.1002/j.1538-7305.1952.tb01396.x.
20.
M. W. Meckes, On the spectral norm of a random Toeplitz matrix, Electron. Commun. Probab., 12 (2007), pp. 315--325, https://doi.org/10.1214/ecp.v12-1313.
21.
V. V. Nekrutkin, Remark on the norm of random Hankel matrices, Vestnik St. Petersburg Univ. Math., 46 (2013), pp. 189--192, https://doi.org/10.3103/s106345411304002x.
22.
M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004.
23.
P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data: Theory of Improper and Noncircular Signals, Cambridge University Press, Cambridge, 2010, https://doi.org/10.1017/CBO9780511815911.
24.
B. D. Schutter, Minimal state-space realization in linear system theory: An overview, J. Comput. Appl. Math., 121 (2000), pp. 331--354, https://doi.org/10.1016/S0377-0427(00)00341-1.
25.
E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York, 1998, https://doi.org/10.1007/978-1-4612-0577-7.
26.
A.-J. Van Der Veen, E. F. Deprettere, and A. L. Swindlehurst, Subspace-based signal analysis using singular value decomposition, Proc. IEEE, 81 (1993), pp. 1277--1308, https://doi.org/10.1109/5.237536.
27.
L. Vanhamme, A. van den Boogaart, and S. Van Huffel, Improved method for accurate and efficient quantification of MRS data with use of prior knowledge, J. Magn. Reson., 129 (1997), pp. 35--43, https://doi.org/10.1006/jmre.1997.1244.
28.
S. Yang and H. Li, Estimating the number of harmonics using enhanced matrix, IEEE Signal Proc. Lett., 14 (2007), pp. 137--140, https://doi.org/10.1109/lsp.2006.882095.
29.
Y. Zhang, Z. Zhang, X. Xu, and H. Hua, Modal parameter identification using response data only, J. Sound Vib., 282 (2005), pp. 367--380, https://doi.org/10.1016/j.jsv.2004.02.012.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3447 - A3461
ISSN (online): 1095-7197

History

Submitted: 20 August 2018
Accepted: 27 July 2020
Published online: 27 October 2020

Keywords

  1. McMillan degree
  2. Hankel matrix
  3. model order selection
  4. random matrix

MSC codes

  1. 15B52
  2. 60B20
  3. 62B10
  4. 70J10
  5. 93E12

Authors

Affiliations

Funding Information

Defense Advanced Research Projects Agency https://doi.org/10.13039/100000185
National Science Foundation https://doi.org/10.13039/100000001 : DMS-0240058, DMS-0739420

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media