Abstract

We introduce high order Bellman equations, extending classical Bellman equations to the tensor setting. We introduce weakly chained diagonally dominant (w.c.d.d.) tensors and show that a sufficient condition for the existence and uniqueness of a positive solution to a high order Bellman equation is that the tensors appearing in the equation are w.c.d.d. M-tensors. In this case, we give a policy iteration algorithm to compute this solution. We also prove that a weakly diagonally dominant Z-tensor with nonnegative diagonals is a strong M-tensor if and only if it is w.c.d.d. This last point is analogous to a corresponding result in the matrix setting and tightens a result from [L. Zhang, L. Qi, and G. Zhou, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 437--452]. We apply our results to obtain a provably convergent numerical scheme for an optimal control problem using an “optimize then discretize” approach which outperforms (in both computation time and accuracy) a classical “discretize then optimize” approach. To the best of our knowledge, a link between M-tensors and optimal control has not been previously established.

Keywords

  1. Bellman equation
  2. weakly chained diagonal dominance
  3. M-tensors
  4. policy iteration
  5. optimal control
  6. finite differences

MSC codes

  1. 15A69
  2. 65H10
  3. 65N22

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. Azimzadeh, A fast and stable test to check if a weakly diagonally dominant matrix is a nonsingular M-matrix, Math. Comp., 88 (2019), pp. 783--800.
2.
P. Azimzadeh and P. A. Forsyth, Weakly chained matrices, policy iteration, and impulse control, SIAM J. Numer. Anal., 54 (2016), pp. 1341--1364, https://doi.org/10.1137/15M1043431.
3.
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptot. Anal., 4 (1991), pp. 271--283.
4.
J. T. Betts and S. L. Campbell, Discretize then optimize, in Mathematics for Industry: Challenges and Frontiers, SIAM, Philadelphia, 2005, pp. 140--157.
5.
O. Bokanowski, S. Maroso, and H. Zidani, Some convergence results for Howard's algorithm, SIAM J. Numer. Anal., 47 (2009), pp. 3001--3026, https://doi.org/10.1137/08073041X.
6.
J. H. Bramble and B. E. Hubbard, On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, J. Math. Phys., 43 (1964), pp. 117--132.
7.
Y. Chen, J. W. L. Wan, and J. Lin, Monotone mixed finite difference scheme for Monge-Ampère equation, J. Sci. Comput., 176 (2018).
8.
M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1--67, https://doi.org/10.1090/S0273-0979-1992-00266-5.
9.
W. Ding, L. Qi, and Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013), pp. 3264--3278, https://doi.org/10.1016/j.laa.2013.08.038.
10.
W. Ding and Y. Wei, Solving multi-linear systems with M-tensors, J. Sci. Comput., 68 (2016), pp. 689--715, https://doi.org/10.1007/s10915-015-0156-7.
11.
P. A. Forsyth and G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance, J. Comput. Finance, 11 (2007).
12.
S. Friedland, S. Gaubert, and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), pp. 738--749, https://doi.org/10.1016/j.laa.2011.02.042.
13.
S. Hu, Z. Huang, and L. Qi, Strictly nonnegative tensors and nonnegative tensor partition, Sci. China Math., 57 (2014), pp. 181--195, https://doi.org/10.1007/s11425-013-4752-4.
14.
H. J. Kushner and P. G. Dupuis, Numerical methods for stochastic control problems in continuous time, Appl. Math. 24, Springer, New York, 1992, https://doi.org/10.1007/978-1-4684-0441-8.
15.
A. M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton--Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44 (2006), pp. 879--895, https://doi.org/10.1137/S0036142903435235.
16.
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), pp. 1302--1324, https://doi.org/10.1016/j.jsc.2005.05.007.
17.
L. Qi and Z. Luo, Tensor analysis: Spectral theory and special tensors, SIAM, Philadelphia, 2017, https://doi.org/10.1137/1.9781611974751.
18.
P. N. Shivakumar, J. J. Williams, Q. Ye, and C. A. Marinov, On two-sided bounds related to weakly diagonally dominant $M$-matrices with application to digital circuit dynamics, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 298--312, https://doi.org/10.1137/S0895479894276370.
19.
N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Instit. Monogr. 29, Springer, New York, 2013, https://doi.org/10.1007/978-1-4614-4286-8.
20.
L. Zhang, L. Qi, and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 437--452, https://doi.org/10.1137/130915339.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 276 - 298
ISSN (online): 1095-7162

History

Submitted: 27 June 2018
Accepted: 20 December 2018
Published online: 19 February 2019

Keywords

  1. Bellman equation
  2. weakly chained diagonal dominance
  3. M-tensors
  4. policy iteration
  5. optimal control
  6. finite differences

MSC codes

  1. 15A69
  2. 65H10
  3. 65N22

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1613170

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media