Abstract

We present a highly scalable framework that targets problems of interest to the numerical relativity and broader astrophysics communities. This framework combines a parallel octree-refined adaptive mesh with a wavelet adaptive multiresolution and a physics module to solve the Einstein equations of general relativity. The goal of this work is to perform advanced, massively parallel numerical simulations of intermediate-mass-ratio inspirals of binary black holes with mass ratios on the order of 100:1. These studies will be used to generate waveforms as used in the data analysis of the Laser Interferometer Gravitational-Wave Observatory and to calibrate semianalytical approximate methods. Our framework consists of a distributed memory octree-based adaptive meshing framework in conjunction with a node-local code generator. The code generator makes our code portable across different architectures. The equations corresponding to the target application are written in symbolic notation, and generators for different architectures can be added independently of the application. Additionally, this symbolic interface also makes our code extensible and as such has been designed to easily accommodate many existing algorithms in astrophysics for plasma dynamics and radiation hydrodynamics. Our adaptive meshing algorithms and data structures have been optimized for modern architectures with deep memory hierarchies. This enables our framework to achieve excellent performance and scalability on modern leadership architectures. We demonstrate excellent weak scalability up to 131K cores on the Oak Ridge National Laboratory's Titan for binary mergers for mass ratios up to 100.

Keywords

  1. octrees
  2. adaptive mesh refinement
  3. binary compact mergers
  4. numerical relativity
  5. automated code generation
  6. BSSNOK equations

MSC codes

  1. 83-08
  2. 85-08

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals

Authors: Milinda Fernando, David Neilsen, Hyun Lim, Eric Hirschmann, and Hari Sundar

File: mass_ratio_1.mp4

Type: animation

Contents: simulation of binary black hole problem of black hole mass ratios 1


File: mass_ratio_10.mp4

Type: animation

Contents: simulation of binary black hole problem of black hole mass ratios 10


File: mass_ratio_100.mp4

Type: animation

Contents: simulation of binary black hole problem of black hole mass ratios 100


File: nlsmb.mp4

Type: animation

Contents: simulation of the NLSM proeblem with 2 Gaussians

References

1.
J. Abadie et al., Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Class. Quant. Grav., 27 (2010), 173001, https://doi.org/10.1088/0264-9381/27/17/173001.
2.
B. Abbott et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017), 161101, https://doi.org/10.1103/PhysRevLett.119.161101.
3.
B. P. Abbott et al., Astrophysical implications of the binary black-hole merger GW150914, Astrophys. J., 818 (2016), L22, https://doi.org/10.3847/2041-8205/818/2/L22.
4.
B. P. Abbott et al., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116 (2016), 241103, https://doi.org/10.1103/PhysRevLett.116.241103.
5.
B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016), 061102, https://doi.org/10.1103/PhysRevLett.116.061102.
6.
B. P. Abbott et al., Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817, Astrophys. J., 850 (2017), L39, https://doi.org/10.3847/2041-8213/aa9478.
7.
B. P. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J., 848 (2017), L13, https://doi.org/10.3847/2041-8213/aa920c.
8.
B. P. Abbott et al., GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett., 118 (2017), 221101, https://doi.org/10.1103/PhysRevLett.118.221101.
9.
B. P. Abbott et al., GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett., 119 (2017), 141101, https://doi.org/10.1103/PhysRevLett.119.141101.
10.
B. P. Abbott et al., Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848 (2017), L12, https://doi.org/10.3847/2041-8213/aa91c9.
11.
F. Acernese et al., Advanced Virgo: A second-generation interferometric gravitational wave detector, Class. Quant. Grav., 32 (2015), 024001, https://doi.org/10.1088/0264-9381/32/2/024001.
12.
A. Ahimian, I. Lashuk, S. Veerapaneni, C. Aparna, D. Malhotra, I. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale direct numerical simulation of blood flow on $200$K cores and heterogeneous architectures, in SC10: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, ACM/IEEE, 2010.
13.
A. Akansu and R. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, Academic Press, 1992.
14.
A. Albert et al., Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, Astrophys. J., 850 (2017), L35, https://doi.org/10.3847/2041-8213/aa9aed.
15.
M. Alcubierre, Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, Oxford University Press, Oxford, 2008.
16.
Applied Numerical Algorithms Group, Chombo---Infrastructure for Adaptive Mesh Refinement, http://seesar.lbl.gov/anag/chombo/, Lawrence Berkeley National Laboratory, Berkeley, CA, 2006.
17.
S. Babak, A. Taracchini, and A. Buonanno, Validating the Effective-One-Body Model of Spinning, Precessing Binary Black Holes against Numerical Relativity, preprint, https://arxiv.org/abs/1607.05661, 2016.
18.
T. W. Baumgarte and S. L. Shapiro, On the numerical integration of Einstein's field equations, Phys. Rev. D, 59 (1999), 024007, https://doi.org/10.1103/PhysRevD.59.024007.
19.
J. Bédorf, E. Gaburov, and S. Portegies Zwart, Bonsai: A GPU tree-code, in Advances in Computational Astrophysics: Methods, Tools, and Outcome, R. Capuzzo-Dolcetta, M. Limongi, and A. Tornambè, eds., Astronomical Society of the Pacific Conference Series 453, 2012, p. 325, https://arxiv.org/abs/1204.2280.
20.
M. Bern, D. Eppstein, and S.-H. Teng, Parallel construction of quadtrees and quality triangulations, Internat. J. Comput. Geom. Appl., 9 (1999), pp. 517--532.
21.
S. Bertoluzza and G. Naldi, A wavelet collocation method for the numerical solution of partial differential equations, Appl. Comput. Harmon. Anal., 3 (1996), pp. 1--9.
22.
M. Boyle, Transformations of asymptotic gravitational-wave data, Phys. Rev. D, 93 (2016), 084031, https://doi.org/10.1103/PhysRevD.93.084031.
23.
B. Bruegmann, J. A. Gonzalez, M. Hannam, S. Husa, U. Sperhake, and W. Tichy, Calibration of moving puncture simulations, Phys. Rev. D, 77 (2008), 024027, https://doi.org/10.1103/PhysRevD.77.024027.
24.
M. Bugner, T. Dietrich, S. Bernuzzi, A. Weyhausen, and B. Bruegmann, Solving 3D Relativistic Hydrodynamical Problems with WENO Discontinuous Galerkin Methods, preprint, https://arxiv.org/abs/1508.07147, 2015.
25.
C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103--1133, https://doi.org/10.1137/100791634.
26.
Cactus Computational Toolkit, http://www.cactuscode.org.
27.
M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision, Phys. Rev. Lett., 96 (2006), 111101.
28.
Carpet,an AMR driver for Cactus, http://www.carpetcode.org.
29.
J. Cocke, Global common subexpression elimination, in Proceedings of a Symposium on Compiler Optimization, ACM, New York, 1970, pp. 20--24, https://doi.org/10.1145/800028.808480.
30.
R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Development, 11 (1967), pp. 215--234, https://doi.org/10.1147/rd.112.0215.
31.
B. Côté, C. L. Fryer, K. Belczynski, O. Korobkin, M. Chruślińska, N. Vassh, M. R. Mumpower, J. Lippuner, T. M. Sprouse, R. Surman, and R. Wollaeger, The origin of r-process elements in the Milky Way, Astrophys. J., 855 (2018), 99, http://stacks.iop.org/0004-637X/855/i=2/a=99.
32.
J. DeBuhr, B. Zhang, M. Anderson, D. Neilsen, and E. W. Hirschmann, Relativistic Hydrodynamics with Wavelets, preprint, https://arxiv.org/abs/1512.00386, 2015.
33.
D. L. Donoho, Interpolating Wavelet Transforms, Technical Report, Department of Statistics, Stanford University, 1992.
34.
M. Dumbser, F. Guercilena, S. Koeppel, L. Rezzolla, and O. Zanotti, A Strongly Hyperbolic First-Order CCZ4 Formulation of the Einstein Equations and Its Solution with Discontinuous Galerkin Schemes, preprint, https://arxiv.org/abs/1707.09910, 2017.
36.
Z. B. Etienne, V. Paschalidis, R. Haas, P. Msta, and S. L. Shapiro, IllinoisGRMHD: An open-source, user-friendly GRMHD code for dynamical spacetimes, Class. Quant. Grav., 32 (2015), 175009, https://doi.org/10.1088/0264-9381/32/17/175009.
37.
E. Evans, S. Iyer, E. Schnetter, W.-M. Suen, J. Tao, R. Wolfmeyer, and H.-M. Zhang, Computational relativistic astrophysics with adaptive mesh refinement: Testbeds, Phys. Rev. D, 71 (2005), 081301, https://doi.org/10.1103/PhysRevD.71.081301.
38.
M. Fernando, D. Duplyakin, and H. Sundar, Machine and application aware partitioning for adaptive mesh refinement applications, in Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing, HPDC'17, ACM, New York, 2017, pp. 231--242, https://doi.org/10.1145/3078597.3078610.
39.
W. D. Frazer and A. C. McKellar, Samplesort: A sampling approach to minimal storage tree sorting, J. ACM, 17 (1970), pp. 496--507, https://doi.org/10.1145/321592.321600.
40.
J. M. Fregeau, S. L. Larson, M. C. Miller, R. W. O'Shaughnessy, and F. A. Rasio, Observing IMBH-IMBH binary coalescences via gravitational radiation, Astrophys. J., 646 (2006), pp. L135--L138, https://doi.org/10.1086/507106.
41.
A. Goldstein et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J., 848 (2017), L14, https://doi.org/10.3847/2041-8213/aa8f41.
42.
T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf, The Cactus framework and toolkit: Design and applications, in Vector and Parallel Processing - VECPAR '2002, 5th International Conference, Springer, 2003, pp. 197--227, http://www.springerlink.com/content/2fapcbeyyc1xg0mm/.
43.
E. Gourgoulhon, 3+1 Formalism and Bases of Numerical Relativity, preprint, https://arxiv.org/abs/gr-qc/0703035, 2007.
44.
P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing link: Bayesian detection and measurement of intermediate-mass black-hole binaries, Phys. Rev. D, 92 (2015), 022002, https://doi.org/10.1103/PhysRevD.92.022002.
45.
HAD home page, http://had.liu.edu, 2009.
46.
J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli, The RIT binary black hole simulations catalog, Class. Quant. Grav., 34 (2017), 224001, http://stacks.iop.org/0264-9381/34/i=22/a=224001.
47.
M. Holmström, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21 (1999), pp. 405--420, https://doi.org/10.1137/S1064827597316278.
48.
S. Husa, I. Hinder, and C. Lechner, Kranc: A Mathematica application to generate numerical codes for tensorial evolution equations, Comput. Phys. Commun., 174 (2006), pp. 983--1004, https://doi.org/10.1016/j.cpc.2006.02.002.
49.
M. F. Ionescu and K. E. Schauser, Optimizing parallel bitonic sort, in Proceedings 11th International Parallel Processing Symposium, 1997, pp. 303--309, https://doi.org/10.1109/IPPS.1997.580914.
50.
K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D. Shoemaker, Georgia Tech catalog of gravitational waveforms, Class. Quant. Grav., 33 (2016), 204001, http://stacks.iop.org/0264-9381/33/i=20/a=204001.
51.
D. Joyner, O. Čertík, A. Meurer, and B. E. Granger, Open source computer algebra systems: SymPy, ACM Commun. Comput. Algebra, 45 (2012), pp. 225--234.
52.
D. Keitel et al., The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity, Phys. Rev. D, 96 (2017), 024006, https://doi.org/10.1103/PhysRevD.96.024006.
53.
L. E. Kidder et al., SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics, J. Comput. Phys., 335 (2017), pp. 84--114, https://doi.org/10.1016/j.jcp.2016.12.059.
54.
K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada, High resolution numerical-relativity simulations for the merger of binary magnetized neutron stars, Phys. Rev. D, 90 (2014), 041502, https://doi.org/10.1103/PhysRevD.90.041502.
55.
K. Kiuchi, K. Kyutoku, and M. Shibata, Three dimensional evolution of differentially rotating magnetized neutron stars, Phys. Rev. D, 86 (2012), 064008, https://doi.org/10.1103/PhysRevD.86.064008.
56.
H.-O. Kreiss and J. Oliger, Methods for Approximate Solution of Time Dependent Problems, GARP Publication Series, Geneva, 1973.
57.
L. Lehner and F. Pretorius, Numerical relativity and astrophysics, Ann. Rev. Astron. Astrophys., 52 (2014), pp. 661--694, https://doi.org/10.1146/annurev-astro-081913-040031.
58.
S. L. Liebling, Singularity threshold of the nonlinear sigma model using 3D adaptive mesh refinement, Phys. Rev. D, 66 (2002), 041703, https://doi.org/10.1103/PhysRevD.66.041703.
60.
C. O. Lousto, H. Nakano, Y. Zlochower, and M. Campanelli, Intermediate mass ratio black hole binaries: Numerical relativity meets perturbation theory, Phys. Rev. Lett., 104 (2010), 211101, https://doi.org/10.1103/PhysRevLett.104.211101.
61.
C. O. Lousto and Y. Zlochower, Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity, Phys. Rev. Lett., 106 (2011), 041101, https://doi.org/10.1103/PhysRevLett.106.041101.
62.
A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3 (2017), e103, https://doi.org/10.7717/peerj-cs.103.
63.
V. Mewes, Y. Zlochower, M. Campanelli, I. Ruchlin, Z. B. Etienne, and T. W. Baumgarte, Numerical Relativity in Spherical Coordinates with the Einstein Toolkit, preprint, https://arxiv.org/abs/1802.09625, 2018.
64.
E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-Bielich, New constraints on radii and tidal deformabilities of neutron stars from GW170817, Phys. Rev. Lett., 120 (2018), 261103, https://doi.org/10.1103/PhysRevLett.120.261103.
65.
T. Nakamura, K. Oohara, and Y. Kojima, General relativistic collapse to black holes and gravitational waves from black holes, Progr. Theoret. Phys. Suppl., 90 (1987), pp. 1--218, https://doi.org/10.1143/PTPS.90.1.
66.
D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner, E. O'Connor et al., Magnetized neutron stars with realistic equations of state and neutrino cooling, Phys. Rev. D, 89 (2014), 104029, https://doi.org/10.1103/PhysRevD.89.104029.
67.
S. Paolucci, Z. J. Zikoski, and T. Grenga, WAMR: An adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm, J. Comput. Phys., 272 (2014), pp. 842--864.
68.
S. Paolucci, Z. J. Zikoski, and D. Wirasaet, WAMR: An adaptive wavelet method for the simulation of compressible reacting flow. Part I. Accuracy and efficiency of algorithm, J. Comput. Phys., 272 (2014), pp. 814--841.
69.
Y. A. Rastigejev and S. Paolucci, Wavelet-based adaptive multiresolution computation of viscous reactive flows, Internat. J. Numer. Methods Fluids, 52 (2006), pp. 749--784, https://doi.org/10.1002/fld.1202.
70.
J. D. Regele and O. V. Vasilyev, An adaptive wavelet-collocation method for shock computations, Int. J. Comput. Fluid Dyn., 23 (2009), pp. 503--518.
71.
L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, Oxford, 2013.
72.
L. F. Roberts, C. D. Ott, R. Haas, E. P. O'Connor, P. Diener, and E. Schnetter, General relativistic three-dimensional multi-group neutrino radiation-hydrodynamics simulations of core-collapse supernovae, Astrophys. J., 831 (2016), 98, https://doi.org/10.3847/0004-637X/831/1/98.
73.
I. Ruchlin, Z. B. Etienne, and T. W. Baumgarte, SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems, preprint, https://arxiv.org/abs/1712.07658, 2017.
74.
R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees, in SC'08: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, ACM/IEEE, 2008.
75.
O. Sarbach, G. Calabrese, J. Pullin, and M. Tiglio, Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations, Phys. Rev. D, 66 (2002), 064002, https://doi.org/10.1103/PhysRevD.66.064002.
76.
B. S. Sathyaprakash and S. V. Dhurandhar, Choice of filters for the detection of gravitational waves from coalescing binaries, Phys. Rev. D, 44 (1991), pp. 3819--3834, https://doi.org/10.1103/PhysRevD.44.3819.
77.
V. Savchenko et al., INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817, Astrophys. J., 848 (2017), L15, https://doi.org/10.3847/2041-8213/aa8f94.
78.
M. Shibata, Numerical Relativity, World Scientific, River Edge, NJ, 2015.
79.
M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Tanaka, Modeling GW170817 based on numerical relativity and its implications, Phys. Rev. D, 96 (2017), 123012, https://doi.org/10.1103/PhysRevD.96.123012.
80.
M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D, 52 (1995), pp. 5428--5444, https://doi.org/10.1103/PhysRevD.52.5428.
81.
D. Shoemaker et al., Advanced LIGO reference design. ligo-m060056-v2, https://dcc.ligo.org/LIGO-M060056-v2/public, 2011.
82.
R. J. E. Smith, I. Mandel, and A. Vecchio, Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced gravitational-wave detectors, Phys. Rev. D, 88 (2013), 044010, https://doi.org/10.1103/PhysRevD.88.044010.
83.
U. Sperhake, The numerical relativity breakthrough for binary black holes, Class. Quant. Grav., 32 (2015), 124011, https://doi.org/10.1088/0264-9381/32/12/124011.
84.
U. Sperhake, V. Cardoso, C. D. Ott, E. Schnetter, and H. Witek, Extreme black hole simulations: Collisions of unequal mass black holes and the point particle limit, Phys. Rev. D, 84 (2011), 084038, https://doi.org/10.1103/PhysRevD.84.084038.
85.
H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests of octrees, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '12, IEEE Computer Society Press, Los Alamitos, CA, 2012, pp. 43:1--43:11, http://dl.acm.org/citation.cfm?id=2388996.2389055.
86.
H. Sundar, R. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of linear octrees in parallel, SIAM J. Sci. Comput., 30 (2008), pp. 2675--2708, https://doi.org/10.1137/070681727.
87.
H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and G. Biros, Low-constant parallel algorithms for finite element simulations using linear octrees, in SC'07: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, ACM/IEEE, 2007.
88.
B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of binary black hole mergers using spectral methods, Phys. Rev. D, 80 (2009), 124010, https://doi.org/10.1103/PhysRevD.80.124010.
89.
S. A. Teukolsky, Formulation of Discontinuous Galerkin Methods for Relativistic Astrophysics, preprint, https://arxiv.org/abs/1510.01190, 2015.
90.
M. Thierfelder, S. Bernuzzi, and B. Bruegmann, Numerical relativity simulations of binary neutron stars, Phys.Rev. D, 84 (2011), 044012, https://doi.org/10.1103/PhysRevD.84.044012.
91.
W. Tichy and P. Marronetti, A Simple method to set up low eccentricity initial data for moving puncture simulations, Phys. Rev. D, 83 (2011), 024012, https://doi.org/10.1103/PhysRevD.83.024012.
92.
L. Valgaerts, Space-Filling Curves. An Introduction, Technical University Munich, 2005.
93.
O. V. Vasilyev and C. Bowman, Second-generation wavelet collocation method for the solution of partial differential equations, J. Comput. Phys., 165 (2000), pp. 660--693.
94.
O. V. Vasilyev and S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. Comput. Phys., 125 (1996), pp. 498--512.
95.
O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs, J. Comput. Phys., 138 (1997), pp. 16--56.
96.
O. V. Vasilyev, S. Paolucci, and M. Sen, A multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. Comput. Phys., 120 (1995), pp. 33 -- 47.
97.
Virgo home page, http://www.virgo-gw.eu, 2018.
98.
T. Weinzierl, The Peano software---parallel, automaton-based, dynamically adaptive grid traversals, ACM Trans. Math. Software, 2019, http://dro.dur.ac.uk/26958/.
99.
T. Yamamoto, M. Shibata, and K. Taniguchi, Simulating coalescing compact binaries by a new code SACRA, Phys. Rev. D, 78 (2008), 064054, https://doi.org/10.1103/PhysRevD.78.064054.
100.
Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. Lousto, Accurate black hole evolutions by fourth-order numerical relativity, Phys. Rev. D, 72 (2005), 024021, https://doi.org/10.1103/PhysRevD.72.024021.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C97 - C138
ISSN (online): 1095-7197

History

Submitted: 27 June 2018
Accepted: 17 January 2019
Published online: 2 April 2019

Keywords

  1. octrees
  2. adaptive mesh refinement
  3. binary compact mergers
  4. numerical relativity
  5. automated code generation
  6. BSSNOK equations

MSC codes

  1. 83-08
  2. 85-08

Authors

Affiliations

Funding Information

Extreme Science and Engineering Discovery Environment : TG-PHY180002

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : ACI-1464244, CCF-1643056, PHY-1607356

Funding Information

U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-AC05-00OR22725

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.