Abstract

We give a fully polynomial-time randomized approximation scheme (FPRAS) for the all-terminal network reliability problem, which is to determine the probability that in an undirected graph, assuming each edge fails independently, the remainder of the graph is still connected. Our main contribution is to confirm a conjecture by Gorodezky and Pak [Random Structures Algorithms, 44 (2014), pp. 201--223] that the expected running time of the “cluster-popping” algorithm in bidirected graphs is bounded by a polynomial in the size of the input.

Keywords

  1. network reliability
  2. approximate counting
  3. randomized algorithms

MSC codes

  1. 68W20
  2. 68W40
  3. 68Q87

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
K. Adiprasito, J. Huh, and E. Katz, Hodge theory for combinatorial geometries, Ann. of Math. (2), 188 (2018), pp. 381--452.
2.
M. O. Ball, Complexity of network reliability computations, Networks, 10 (1980), pp. 153--165.
3.
M. O. Ball, Computational complexity of network reliability analysis: An overview, IEEE Trans. Reliab., 35 (1986), pp. 230--239.
4.
M. O. Ball and J. S. Provan, Calculating bounds on reachability and connectedness in stochastic networks, Networks, 13 (1983), pp. 253--278.
5.
H. Cohn, R. Pemantle, and J. G. Propp, Generating a random sink-free orientation in quadratic time, Electron. J. Combin., 9 (2002), 10.
6.
C. J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, 1987.
7.
L. A. Goldberg and M. Jerrum, Inapproximability of the Tutte polynomial, Inform. and Comput., 206 (2008), pp. 908--929.
8.
L. A. Goldberg and M. Jerrum, The complexity of computing the sign of the Tutte polynomial, SIAM J. Comput., 43 (2014), pp. 1921--1952, https://doi.org/10.1137/12088330X.
9.
I. Gorodezky and I. Pak, Generalized loop-erased random walks and approximate reachability, Random Structures Algorithms, 44 (2014), pp. 201--223.
10.
H. Guo and M. Jerrum, A polynomial-time approximation algorithm for all-terminal network reliability, in Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), I. Chatzigiannakis et al., eds., LIPIcs. Leibniz Int. Proc. Inform. 107, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2018, 68.
11.
H. Guo, M. Jerrum, and J. Liu, Uniform sampling through the Lovász local lemma, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC '17), ACM, 2017, pp. 342--355.
12.
J. N. Hagstrom, Computing rooted communication reliability in an almost acyclic digraph, Networks, 21 (1991), pp. 581--593.
13.
D. G. Harris and A. Srinivasan, Improved bounds and algorithms for graph cuts and network reliability, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2014, pp. 259--278, https://doi.org/10.1137/1.9781611973402.19.
14.
J. Huh and E. Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann., 354 (2012), pp. 1103--1116.
15.
F. Jaeger, D. L. Vertigan, and D. J. A. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc., 108 (1990), pp. 35--53.
16.
M. Jerrum, On the Complexity of Evaluating Multivariate Polynomials, Ph.D. dissertation, Tech. report CST-11-81, Department of Computer Science, University of Edinburgh, 1981.
17.
M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput., 18 (1989), pp. 1149--1178, https://doi.org/10.1137/0218077.
18.
M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising model, SIAM J. Comput., 22 (1993), pp. 1087--1116, https://doi.org/10.1137/0222066.
19.
D. R. Karger, A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem, SIAM J. Comput., 29 (1999), pp. 492--514, https://doi.org/10.1137/S0097539796298340.
20.
D. R. Karger, A fast and simple unbiased estimator for network (un)reliability, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), IEEE, 2016, pp. 635--644.
21.
D. R. Karger, Faster (and still pretty simple) unbiased estimators for network (un)reliability, in Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2017), IEEE, 2017, pp. 755--766.
22.
R. M. Karp and M. Luby, Monte-Carlo algorithms for the planar multiterminal network reliability problem, J. Complexity, 1 (1985), pp. 45--64.
23.
K. B. R. Kolipaka and M. Szegedy, Moser and Tardos meet Lovász, in Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC '11), ACM, 2011, pp. 235--244.
24.
M. Lenz, The $f$-vector of a representable-matroid complex is log-concave, Adv. in Appl. Math., 51 (2013), pp. 543--545.
25.
R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM, 57 (2010), 11.
26.
J. G. Oxley, Matroid Theory, Oxford University Press, 1992.
27.
J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM J. Comput., 12 (1983), pp. 777--788, https://doi.org/10.1137/0212053.
28.
J. B. Shearer, On a problem of Spencer, Combinatorica, 5 (1985), pp. 241--245.
29.
L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410--421, https://doi.org/10.1137/0208032.
30.
D. Vertigan and D. J. A. Welsh, The computational complexity of the Tutte plane: The bipartite case, Combin. Probab. Comput., 1 (1992), pp. 181--187.
31.
D. J. A. Welsh, Complexity: Knots, Colourings and Counting, London Math. Soc. Lecture Note Ser. 186, Cambridge University Press, 1993.
32.
D. J. A. Welsh, The Tutte polynomial, Random Structures Algorithms, 15 (1999), pp. 210--228.
33.
D. B. Wilson, Generating random spanning trees more quickly than the cover time, in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, ACM, 1996, pp. 296--303.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 964 - 978
ISSN (online): 1095-7111

History

Submitted: 20 July 2018
Accepted: 23 January 2019
Published online: 9 May 2019

Keywords

  1. network reliability
  2. approximate counting
  3. randomized algorithms

MSC codes

  1. 68W20
  2. 68W40
  3. 68Q87

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/N004221/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.