A Convergent Linearized Lagrange Finite Element Method for the Magneto-hydrodynamic Equations in Two-Dimensional Nonsmooth and Nonconvex Domains

Abstract

A new fully discrete linearized $H^1$-conforming Lagrange finite element method is proposed for solving the two-dimensional magneto-hydrodynamics equations based on a magnetic potential formulation. The proposed method yields numerical solutions that converge in general domains that may be nonconvex, nonsmooth, and multiconnected. The convergence of subsequences of the numerical solutions is proved only based on the regularity of the initial conditions and source terms without extra assumptions on the regularity of the solution. Strong convergence in $L^2(0,T;{L}^2(\Omega))$ was proved for the numerical solutions of both ${\bm u}$ and ${\bm H}$ without any mesh restriction.

Keywords

  1. MHD
  2. nonsmooth
  3. nonconvex
  4. H1-conforming
  5. finite element
  6. convergence

MSC codes

  1. 65M12
  2. 65N30
  3. 85A30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Academic Press, Amsterdam, 2003.
2.
F. Armero and J. C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier--Stokes equations, Comput. Methods Appl. Mech. Engrg., 131 (1996), pp. 41--90.
3.
S. Asai, Electromagnetic Processing of Materials, Fluid Mech. Appl. 99, Springer Netherlands, Berlin, 2012.
4.
F. Assous, P. Ciarlet, Jr., and E. Sonnendrücker, Resolution of the Maxwell equations in a domain with reentrant corners, ESAIM Math. Model. Numer. Anal., 32 (1998), pp. 359--389.
5.
S. Badia and R. Codina, A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions, SIAM J. Numer. Anal., 50 (2012), pp. 398--417.
6.
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier--Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2013.
7.
S. Brenner, J. Cui, Z. Nan, and L. Y. Sung, Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations, Math. Comp., 81 (2012), pp. 643--659.
8.
W. Cai, J. Wu, and J. Xin, Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD), Commun. Math. Stat., 1 (2013), pp. 19--35.
9.
M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., 93 (2002), pp. 239--277.
10.
M. Crouzeix and V. Thomée, The stability in $L_p$ and $W_p^1$ of the $L_2$-projection onto finite element function spaces, Math. Comp., 48 (1987), pp. 521--532.
11.
M. Dauge, Elliptic Boundary Value Problems in Corner Domains, Springer, Berlin, 1988.
12.
M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, 15 (1992), pp. 227--261.
13.
M. Dauge, Regularity and Singularities in Polyhedral Domains: The Case of Laplace and Maxwell Equations, Slides d'un mini-cours de 3 heures, Karlsruhe, April, 2008, https://perso.univ-rennes1.fr/monique.dauge/publis/Talk_Karlsruhe08.html.
14.
H.-Y. Duan, F. Jia, P. Lin, and R. C. E. Tan, The local $L^2$ projected $c0$ finite element method for Maxwell problem, SIAM J. Numer. Anal., 47 (2009), pp. 1274--1303.
15.
T. Dupont, G. Fairweather, and J. P. Johnson, Three-level Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 11 (1974), pp. 392--410.
16.
J. F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numer. Math., 87 (2000), pp. 83--111.
17.
V. Girault and L. R. Scott, A quasi-local interpolation operator preserving the discrete divergence, Calcolo, 40 (2003), pp. 1--19.
18.
C. Greif, D. Li, D. Schötzau, and X. Wei, A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 2840--2855.
19.
J. L. Guermond and P. D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case, Numer. Methods Partial Differential Equations, 19 (2003), pp. 709--731.
20.
M. Gunzburger, X. He, and B. Li, On Stokes-Ritz projection and multi-step backward differentiation schemes in decoupling the Stokes--Darcy model, SIAM J. Numer. Anal., 56 (2018), pp. 397--427.
21.
M. Gunzburger, A. J. Meir, and J. P. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics, Math. Comp., 56 (1991), pp. 523--563.
22.
C. Hazard and S. Lohrengel, A singular field method for Maxwell's equations: Numerical aspects for $2$D magnetostatics, SIAM J. Numer. Anal., 40 (2003), pp. 1021--1040.
23.
Y. He, Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations, IMA J. Numer. Anal., 35 (2015), pp. 767--801.
24.
Y. He and J. Zou, A priori estimates and optimal finite element approximation of the MHD flow in smooth domains, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 181--206.
25.
R. Hiptmair, L. Li, S. Mao, and W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., 28 (2018), pp. 659--695.
26.
K. Hu, Y. Ma, and J. Xu, Stable finite element methods preserving $\nabla\cdot B=0$ exactly for MHD models, Numer. Math., 135 (2017), pp. 371--396.
27.
W. Layton, H. Tran, and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), pp. 1083--1102.
28.
B. Li and Z. Zhang, A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations, J. Comput. Phys., 303 (2015), pp. 238--250.
29.
B. Li and Z. Zhang, Mathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decomposition, Math. Comp., 86 (2017), pp. 1579--1608.
30.
F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput., 22 (2005), pp. 413--442.
31.
F. Li, L. Xu, and S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys., 230 (2011), pp. 4828--4847.
32.
F. Li and L. Xu, Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations, J. Comput. Phys., 231 (2012), pp. 2655--2675.
33.
J.-G. Liu and W.-C. Wang, An energy-preserving MAC--Yee scheme for the incompressible MHD equation, J. Comput. Phys., 174 (2001), pp. 12--37.
34.
J.-G. Liu and W.-C. Wang, Energy and helicity preserving schemes for hydro- and magneto- hydrodynamics flows with symmetry, J. Comput. Phys., 200 (2004), pp. 8--33.
35.
J.-G. Liu and W.-C. Wang, Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows, SIAM J. Numer. Anal., 44 (2006), pp. 2456--2480.
36.
J. Peterson, On the finite element approximation of incompressible flows of an electrically conducting fluid, Numer. Methods Partial Differential Equations, 4 (1988), pp. 57--68.
37.
A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, ESAIM Math. Model. Numer. Anal., 42 (2008), pp. 1065--1087.
38.
J. Ridder, Convergence of a finite difference scheme for two-dimensional incompressible magnetohydrodynamics, SIAM J. Numer. Anal., 54 (2016), pp. 3550--3576.
39.
Y. Rong, W. Layton, and H. Zhao, Numerical analysis of an artificial compression method for magnetohydrodynamic flows at low magnetic Reynolds numbers, J. Sci. Comput., 76 (2018), pp. 1458--1483.
40.
N. Salah, A. Soulaimani, and W. Habashi, A finite element method for magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 5867--5892.
41.
D. Schötzau, Mixed finite element methods for stationary incompressible magnetohydrodynamics, Numer. Math., 96 (2004), pp. 771--800.
42.
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), pp. 7635--6648.
43.
J. N. Shadid, R. P. Pawlowski, J. W. Banks, L. Chacón, P. T. Lin, and R. S. Tuminaro, Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods, J. Comput. Phys., 229 (2010), pp. 7649--7671.
44.
J. Shen, On error estimates of the penalty method for unsteady Navier--Stokes equations, SIAM J. Numer. Anal., 32 (1995), pp. 386--403.
45.
Y. Unger, M. Mond, and H. Branover, Liquid Metal Flows: Magnetohydrodynamics and Application, American Institute of Aeronautics and Astronautic, Reston, VA, 1988, https://doi.org/10.2514/4.865862.
46.
M. F. Wheeler, A priori $L^2$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), pp. 723--759.
47.
G. D. Zhang and Y. He, Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), pp. 1390--1406.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 430 - 459
ISSN (online): 1095-7170

History

Submitted: 6 August 2018
Accepted: 5 December 2019
Published online: 23 January 2020

Keywords

  1. MHD
  2. nonsmooth
  3. nonconvex
  4. H1-conforming
  5. finite element
  6. convergence

MSC codes

  1. 65M12
  2. 65N30
  3. 85A30

Authors

Affiliations

Funding Information

Hong Kong Research Grants Council : 15301818
Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : FA9550-15-1-0001
National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 91630205, 11771068
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1315259

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media