Abstract

We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion games with polynomial cost functions. In particular, for any positive integer $d$ we construct rather simple games with cost functions of degree at most $d$ which have a PoS of at least $\varOmega(\Phi_d)^{d+1}$, where $\Phi_d\sim d/\ln d$ is the unique positive root of the equation $x^{d+1}=(x+1)^d$. This almost closes the huge gap between $\varTheta(d)$ and $\Phi_d^{d+1}$. Our bound extends also to network congestion games. We further show that the PoS remains exponential even for singleton games. More generally, we provide a lower bound of $\varOmega((1+1/\alpha)^d/d)$ on the PoS of $\alpha$-approximate Nash equilibria for singleton games. All our lower bounds hold for mixed and correlated equilibria as well. On the positive side, we give a general upper bound on the PoS of $\alpha$-approximate Nash equilibria, which is sensitive to the range $W$ of the player weights and the approximation parameter $\alpha$. We do this by explicitly constructing a novel approximate potential function, based on Faulhaber's formula, that generalizes Rosenthal's potential in a continuous, analytic way. From the general theorem, we deduce two interesting corollaries. First, we derive the existence of an approximate pure Nash equilibrium with PoS at most $(d+3)/2$; the equilibrium's approximation parameter ranges from $\varTheta(1)$ to $d+1$ in a smooth way with respect to $W$. Second, we show that for unweighted congestion games, the PoS of $\alpha$-approximate Nash equilibria is at most $(d+1)/\alpha$.

Keywords

  1. congestion games
  2. price of stability
  3. Nash equilibrium
  4. approximate equilibrium
  5. potential games

MSC codes

  1. 68Q99
  2. 91A10
  3. 91A43
  4. 90B20
  5. 90B18

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., Dover, New York, 1964, http://people.math.sfu.ca/~cbm/aands/.
2.
H. Ackermann, H. Röglin, and B. Vöcking, On the impact of combinatorial structure on congestion games, J. ACM, 55 (2008), pp. 1--22, https://doi.org/10.1145/1455248.1455249.
3.
S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann, Exact price of anarchy for polynomial congestion games, SIAM J. Comput., 40 (2011), pp. 1211--1233, https://doi.org/10.1137/090748986.
4.
S. Albers, On the value of coordination in network design, SIAM J. Comput., 38 (2009), pp. 2273--2302, https://doi.org/10.1137/070701376.
5.
E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden, The price of stability for network design with fair cost allocation, SIAM J. Comput., 38 (2008), pp. 1602--1623, https://doi.org/10.1137/070680096.
6.
B. Awerbuch, Y. Azar, and A. Epstein, The price of routing unsplittable flow, SIAM J. Comput., 42 (2013), pp. 160--177, https://doi.org/10.1137/070702370.
7.
J. Bernoulli, Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis, impensis Thurnisiorum, fratrum, Basile\ae, 1713, https://books.google.de/books?id=ebdcNfPz8l8C.
8.
K. Bhawalkar, M. Gairing, and T. Roughgarden, Weighted congestion games: The price of anarchy, universal worst-case examples, and tightness, ACM Trans. Econ. Comput., 2 (2014), 14, https://doi.org/10.1145/2629666.
9.
V. Bilò, A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion games, Theory Comput. Syst., 62 (2018), pp. 1288--1317, https://doi.org/10.1007/s00224-017-9826-1.
10.
V. Bilò, I. Caragiannis, A. Fanelli, and G. Monaco, Improved lower bounds on the price of stability of undirected network design games, Theory Comput. Syst., 52 (2013), pp. 668--686, https://doi.org/10.1007/s00224-012-9411-6.
11.
V. Bilò and C. Vinci, On the impact of singleton strategies in congestion games, in Proceedings of the 25th Annual European Symposium on Algorithms, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Wadern, Germany, 2017, 17, https://doi.org/10.4230/lipics.esa.2017.17.
12.
V. Bilò, M. Flammini, and L. Moscardelli, The price of stability for undirected broadcast network design with fair cost allocation is constant, Games Econom. Behavior, to appear, https://doi.org/10.1016/j.geb.2014.09.010.
13.
I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli, Tight bounds for selfish and greedy load balancing, Algorithmica, 61 (2011), pp. 606--637, https://doi.org/10.1007/s00453-010-9427-8.
14.
I. Caragiannis, A. Fanelli, N. Gravin, and A. Skopalik, Efficient computation of approximate pure Nash equilibria in congestion games, in Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science, Palm Springs, CA, 2011, https://doi.org/10.1109/focs.2011.50.
15.
I. Caragiannis, A. Fanelli, N. Gravin, and A. Skopalik, Approximate pure Nash equilibria in weighted congestion games: Existence, efficient computation, and structure, ACM Trans. Econ. Comput., 3 (2015), 2, https://doi.org/10.1145/2614687.
16.
H.-L. Chen and T. Roughgarden, Network design with weighted players, Theory Comput. Syst., 45 (2008), 302, https://doi.org/10.1007/s00224-008-9128-8.
17.
G. Christodoulou and M. Gairing, Price of stability in polynomial congestion games, ACM Trans. Econ. Comput., 4 (2016), 10, https://doi.org/10.1145/2841229.
18.
G. Christodoulou and E. Koutsoupias, The price of anarchy of finite congestion games, in Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC '05), ACM, New York, 2005, pp. 67--73, https://doi.org/10.1145/1060590.1060600.
19.
G. Christodoulou and E. Koutsoupias, On the price of anarchy and stability of correlated equilibria of linear congestion games, in Algorithms---ESA 2005, Springer, Berlin, 2005, pp. 59--70.
20.
G. Christodoulou, E. Koutsoupias, and P. G. Spirakis, On the performance of approximate equilibria in congestion games, Algorithmica, 61 (2011), pp. 116--140, https://doi.org/10.1007/s00453-010-9449-2.
21.
G. Christodoulou, M. Gairing, Y. Giannakopoulos, and P. G. Spirakis, The price of stability of weighted congestion games, in 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 2018, 150, https://doi.org/10.4230/LIPIcs.ICALP.2018.150.
22.
J. H. Conway and R. K. Guy, The Book of Numbers, Springer, New York, 1996, https://doi.org/10.1007/978-1-4612-4072-3.
23.
J. Dunkel and A. S. Schulz, On the complexity of pure-strategy Nash equilibria in congestion and local-effect games, Math. Oper. Res., 33 (2008), pp. 851--868.
24.
A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure Nash equilibria, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC '04, ACM, New York, 2004, pp. 604--612, https://doi.org/10.1145/1007352.1007445.
25.
J. Faulhaber, Academia Algebr\ae: Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden, Johann Ulrich Schönigs, Augspurg, 1631, https://books.google.de/books?id=0pw_AAAAcAAJ.
26.
M. Feldotto, M. Gairing, G. Kotsialou, and A. Skopalik, Computing approximate pure Nash equilibria in Shapley value weighted congestion games, in Web and Internet Economics 2017, Springer, Cham, 2017, pp. 191--204, https://doi.org/10.1007/978-3-319-71924-5_14.
27.
A. Fiat, H. Kaplan, M. Levy, S. Olonetsky, and R. Shabo, On the price of stability for designing undirected networks with fair cost allocations, in the 33rd International Colloquium on Automata, Languages and Programming (ICALP), M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, eds., Springer, Berlin, 2006, pp. 608--618, https://doi.org/10.1007/11786986_53.
28.
D. Fotakis, S. Kontogiannis, and P. Spirakis, Selfish unsplittable flows, Theoret. Comput. Sci., 348 (2005), pp. 226--239.
29.
D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game, Theoret. Comput. Sci., 410 (2009), pp. 3305--3326, https://doi.org/10.1016/j.tcs.2008.01.004.
30.
M. Goemans, V. Mirrokni, and A. Vetta, Sink equilibria and convergence, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), Pittsburgh, PA, 2005, pp. 142--151, https://doi.org/10.1109/SFCS.2005.68.
31.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, MA, 1989.
32.
C. Hansknecht, M. Klimm, and A. Skopalik, Approximate pure Nash equilibria in weighted congestion games, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), Leibniz International Proceedings in Informatics (LIPIcs) 28, K. Jansen, J. D. P. Rolim, N. R. Devanur, and C. Moore, eds., Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Wadern, Germany, 2014, pp. 242--257, https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.242.
33.
T. Harks and M. Klimm, On the existence of pure Nash equilibria in weighted congestion games, Math. Oper. Res., 37 (2012), pp. 419--436, https://doi.org/10.1287/moor.1120.0543.
34.
T. Harks, M. Klimm, and R. H. Möhring, Characterizing the existence of potential functions in weighted congestion games, Theory Comput. Syst., 49 (2011), pp. 46--70, https://doi.org/10.1007/s00224-011-9315-x.
35.
T. Harks, M. Klimm, and R. H. Möhring, Strong equilibria in games with the lexicographical improvement property, Internat. J. Game Theory, 42 (2012), pp. 461--482, https://doi.org/10.1007/s00182-012-0322-1.
36.
C. G. J. Jacobi, De usu legitimo formulae summatoriae Maclaurinianae, J. Reine Angew. Math., 12 (1834), pp. 263--272, http://www.digizeitschriften.de/dms/img/?PID=GDZPPN00214008X.
37.
D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comp., 61 (1993), pp. 277--277, https://doi.org/10.1090/s0025-5718-1993-1197512-7.
38.
E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, in Proceedings of the 16th Annual ACM Symposium on Theoretical Aspects of Computer Science (STACS '99), ACM, New York, 1999, pp. 404--413.
39.
E. Lee and K. Ligett, Improved bounds on the price of stability in network cost sharing games, in Proceedings of the 14th ACM Conference on Electronic Commerce (EC '13), ACM, New York, 2013, pp. 607--620, https://doi.org/10.1145/2492002.2482562.
40.
D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly, 47 (1940), pp. 533--538, https://doi.org/10.2307/2303833.
41.
L. Libman and A. Orda, Atomic resource sharing in noncooperative networks, Telecommunication Syst., 17 (2001), pp. 385--409, https://doi.org/10.1023/A:1016770831869.
42.
D. S. Mitrinović, Analytic Inequalities, Springer, Berlin, Heidelberg, 1970, https://doi.org/10.1007/978-3-642-99970-3.
43.
D. Monderer and L. S. Shapley, Potential games, Games Econom. Behavior, 14 (1996), pp. 124--143.
44.
N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, eds., Algorithmic Game Theory, Cambridge University Press, Cambridge, UK, 2007.
45.
P. N. Panagopoulou and P. G. Spirakis, Algorithms for pure Nash equilibria in weighted congestion games, J. Experimental Algorithmics, 11 (2007), 2.7, https://doi.org/10.1145/1187436.1216584.
46.
R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Internat. J. Game Theory, 2 (1973), pp. 65--67.
47.
R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), pp. 53--59.
48.
T. Roughgarden, Intrinsic robustness of the price of anarchy, J. ACM, 62 (2015), 32, https://doi.org/10.1145/2806883.
49.
T. Roughgarden and É. Tardos, How bad is selfish routing?, J. ACM, 49 (2002), pp. 236--259, https://doi.org/10.1145/506147.506153.
50.
T. Roughgarden and É. Tardos, Bounding the inefficiency of equilibria in nonatomic congestion games, Games Econom. Behavior, 47 (2004), pp. 389--403, https://doi.org/10.1016/j.geb.2003.06.004.
51.
A. S. Schulz and N. S. Moses, On the performance of user equilibria in traffic networks, in Proceedings of the 14th Annual ACM--SIAM Symposium on Discrete Algorithms (Baltimore, MD), ACM, New York, SIAM, Philadelphia, 2003, pp. 86--87.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1544 - 1582
ISSN (online): 1095-7111

History

Submitted: 16 August 2018
Accepted: 23 August 2019
Published online: 24 October 2019

Keywords

  1. congestion games
  2. price of stability
  3. Nash equilibrium
  4. approximate equilibrium
  5. potential games

MSC codes

  1. 68Q99
  2. 91A10
  3. 91A43
  4. 90B20
  5. 90B18

Authors

Affiliations

Funding Information

Alexander von Humboldt-Stiftung https://doi.org/10.13039/100005156

Funding Information

Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/M008118/1, EP/L011018/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media