Methods and Algorithms for Scientific Computing

Robust Adaptive $hp$ Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation

Abstract

This paper presents an $hp$ a posteriori error analysis for the 2D Helmholtz equation that is robust in the polynomial degree $p$ and the wave number $k$. For the discretization, we consider a discontinuous Galerkin formulation that is unconditionally well posed. The a posteriori error analysis is based on the technique of equilibrated fluxes applied to a shifted Poisson problem, with the error due to the nonconformity of the discretization controlled by a potential reconstruction. We prove that the error estimator is both reliable and efficient, under the condition that the initial mesh size and polynomial degree are chosen such that the discontinuous Galerkin formulation converges, i.e., it is out of the regime of pollution. We confirm the efficiency of an $hp$-adaptive refinement strategy based on the presented robust a posteriori error estimator via several numerical examples.

Keywords

  1. a posteriori error analysis
  2. $hp$ discontinuous Galerkin finite element method
  3. equilibrated fluxes
  4. potential reconstruction
  5. Helmholtz problem

MSC codes

  1. 65N15
  2. 65N30
  3. 65N50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Babuška, F. Ihlenburg, T. Strouboulis, and S. K. Gangaraj, A posteriori error estimation for finite element solutions of Helmholtz' equation. I. The quality of local indicators and estimators, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 3443--3462.
2.
S. Beuchler, V. Pillwein, and S. Zaglmayr, Sparsity optimized high order finite element functions for $H({div})$ on simplices, Numer. Math., 122 (2012), pp. 197--225, https://doi.org/10.1007/s00211-012-0461-0.
3.
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013, https://doi.org/10.1007/978-3-642-36519-5.
4.
D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are $p$-robust, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1189--1197, https://doi.org/10.1016/j.cma.2008.12.010.
5.
E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: Conforming approximations, SIAM J. Numer. Anal., 55 (2017), pp. 2228--2254, https://doi.org/10.1137/15M1038633.
6.
E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: A unified framework, Numer. Math., 140 (2018), pp. 1033--1079, https://doi.org/10.1007/s00211-018-0984-0.
7.
C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput., 21 (2000), pp. 1465--1484, https://doi.org/10.1137/S1064827597327486.
8.
C. Carstensen, J. Gedicke, and D. Rim, Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods, J. Comput. Math., 30 (2012), pp. 337--353, https://doi.org/10.4208/jcm.1108-m3677.
9.
O. Cessenat and B. Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), pp. 255--299, https://doi.org/10.1137/S0036142995285873.
10.
O. Cessenat and B. Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, J. Comput. Acoust., 11 (2003), pp. 227--238, https://doi.org/10.1142/S0218396X03001912.
11.
V. Dolej\vsí, A. Ern, and M. Vohralík, $hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput., 38 (2016), pp. A3220--A3246, https://doi.org/10.1137/15M1026687.
12.
A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53 (2015), pp. 1058--1081, https://doi.org/10.1137/130950100.
13.
A. Ern and M. Vohralík, Stable Broken $H^1$ and $\bf H(\mathrm{div})$ Polynomial Extensions for Polynomial-Degree-Robust Potential and Flux Reconstruction in Three Space Dimensions, preprint, https://arxiv.org/abs/1701.02161, 2017.
14.
X. Feng and H. Wu, $hp$-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp., 80 (2011), pp. 1997--2024, https://doi.org/10.1090/S0025-5718-2011-02475-0.
15.
C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave discontinuous Galerkin methods: Analysis of the $h$-version, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 297--331, https://doi.org/10.1051/m2an/2009002.
16.
S. Kapita, P. Monk, and T. Warburton, Residual-based adaptivity and PWDG methods for the Helmholtz equation, SIAM J. Sci. Comput., 37 (2015), pp. A1525--A1553, https://doi.org/10.1137/140967696.
17.
R. S. Laugesen and B. A. Siudeja, Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality, J. Differential Equations, 249 (2010), pp. 118--135, https://doi.org/10.1016/j.jde.2010.02.020.
18.
J. M. Melenk, On Generalized Finite-Element Methods, ProQuest LLC, Ann Arbor, MI, 1995.
19.
J. M. Melenk, A. Parsania, and S. Sauter, General DG-methods for highly indefinite Helmholtz problems, J. Sci. Comput., 57 (2013), pp. 536--581, https://doi.org/10.1007/s10915-013-9726-8.
20.
J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in $hp$-FEM, Adv. Comput. Math., 15 (2001), pp. 311--331 (2002), https://doi.org/10.1023/A:1014268310921.
21.
I. Perugia and D. Schötzau, The $hp$-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 72 (2003), pp. 1179--1214, https://doi.org/10.1090/S0025-5718-02-01471-0.
22.
S. Petrides and L. F. Demkowicz, An adaptive DPG method for high frequency time-harmonic wave propagation problems, Comput. Math. Appl., 74 (2017), pp. 1999--2017, https://doi.org/10.1016/j.camwa.2017.06.044.
23.
S. Sauter and J. Zech, A posteriori error estimation of $hp$-dG finite element methods for highly indefinite Helmholtz problems, SIAM J. Numer. Anal., 53 (2015), pp. 2414--2440, https://doi.org/10.1137/140973955.
24.
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley & Sons, Chichester, B. G. Teubner, Stuttgart, 1996.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1121 - A1147
ISSN (online): 1095-7197

History

Submitted: 16 August 2018
Accepted: 29 January 2019
Published online: 11 April 2019

Keywords

  1. a posteriori error analysis
  2. $hp$ discontinuous Galerkin finite element method
  3. equilibrated fluxes
  4. potential reconstruction
  5. Helmholtz problem

MSC codes

  1. 65N15
  2. 65N30
  3. 65N50

Authors

Affiliations

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : F 65, P 29197-N32
Vienna Science and Technology Fund https://doi.org/10.13039/501100001821 : MA14-006

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media