Bifurcation Analysis of a Mosquito Population Model with a Saturated Release Rate of Sterile Mosquitoes

Releasing sterile mosquitoes is a method of mosquito control that uses area-wide inundative releases of sterile male mosquitoes to reduce reproduction in a field population of wild mosquitoes. In this paper, we consider a mosquito population model with a nonlinear saturated release rate of sterile mosquitoes and study the complex dynamics and bifurcations of the model. It is shown that there are a weak focus of multiplicity 3 and a nilpotent cusp of codimension 4 for various parameter values and the model exhibits Hopf bifurcation of codimension 3 and Bogdanov--Takens bifurcation of codimension 2 as the parameter values vary. Our analysis also shows that there exists a critical release rate coefficient of sterile mosquitoes, above which the mosquito population can be eliminated and below which the interacting sterile and wild mosquitoes coexist in the form of multiple periodic oscillations and steady states for some initial populations. Numerical simulations are presented to demonstrate the coexistence of a homoclinic loop and a limit cycle, the existence of two limit cycles, and the existence of three limit cycles, respectively.

  • 1.  P. Aguirre E. González-Olivares and  E. Sáez , Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect , SIAM J. Appl. Math. , 69 ( 2009 ), pp. 1244 -- 1262 . LinkISIGoogle Scholar

  • 2.  L. Alphey , Genetic control of mosquitoes , Annu. Rev. Entomol. , 59 ( 2014 ), pp. 205 -- 224 . CrossrefISIGoogle Scholar

  • 3.  R. Anguelov Y. Dumont and  J. Lubuma , Mathematical modeling of sterile insect technology for control of anopheles mosquito , Comput. Math. Appl. , 64 ( 2012 ), pp. 374 -- 389 . CrossrefISIGoogle Scholar

  • 4.  M. P. Atkinson Z. Su N. Alphey L. S. Alphey P. G. Coleman and  L. M. Wein , Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system , Proc. Natl. Acad. Sci. USA , 104 ( 2007 ), pp. 9540 -- 9545 . CrossrefISIGoogle Scholar

  • 5.  H. J. Barclay , Models for the sterile insect release method with the concurrent release of pesticides , Ecol. Model. , 11 ( 1980 ), pp. 167 -- 177 . CrossrefISIGoogle Scholar

  • 6.  H. J. Barclay , Models for pest control: Complementary effects of periodic releases of sterile pests and parasitoids , Theoret. Popul. Biol. , 32 ( 1987 ), pp. 76 -- 89 . CrossrefISIGoogle Scholar

  • 7.  H. J. Barclay and  M. Mackauer , The sterile insect release method for pest control: a density dependent model , Environment. Entomol. , 9 ( 1980 ), pp. 810 -- 817 . CrossrefISIGoogle Scholar

  • 8.  M. Q. Benedict and  A. S. Robinson , The first releases of transgenic mosquitoes: An argument for the sterile insect technique , Trends Parasitol. , 19 ( 2003 ), pp. 349 -- 356 . CrossrefISIGoogle Scholar

  • 9.  A. A. Berryman , Mathematical description of the sterile male principle , Can. Entomol. , 99 ( 1967 ), pp. 858 -- 865 . CrossrefISIGoogle Scholar

  • 10.  K. W. Blayneha and  J. Mohammed-Awel , Insecticide-resistant mosquitoes and malaria control , Math. Biosci. , 252 ( 2014 ), pp. 14 -- 26 . CrossrefISIGoogle Scholar

  • 11.  C. Boete F. B. Agusto and  R. G. Reeves , Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes , J. Theoret. Biol. , 347 ( 2014 ), pp. 33 -- 43 . CrossrefISIGoogle Scholar

  • 12.  R. I. Bogdanov , The versal deformations of a singular point on the plane in the case of zero eigenvalues , Trudy Sem. Petrovsk. Vyp. , 2 ( 1976 ), pp. 37 -- 65 . Google Scholar

  • 13.  L. Cai and  S. Ai . Li, Dynamics of mosquitoes populations with different strategies of releasing sterile mosquitoes, SIAM , J. Appl. Math. , 75 ( 2014 ), pp. 1223 -- 1237 . Google Scholar

  • 14.  D. O. Carvalho A. L. Silva and  R. S. Lees , Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases , Acta Tropica , 132 ( 2014 ), pp. S170 -- S177 . CrossrefISIGoogle Scholar

  • 15.  S.-N. Chow C. Li and  D. Wang , Normal Forms and Bifurcation of Planar Vector Fields , Cambridge University Press , Cambridge, UK , 1994 . Google Scholar

  • 16.  C. S. Coleman and  Hilbert's : How many cycles? in Differential Equations Model , M. Braun, C. S. Coleman, D. Drew, eds., Springer , New York , 1983 , pp. 279 -- 297 . Google Scholar

  • 17.  C. Dufourd and  Y. Dumont , Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control , Comput. Math. Appl. , 66 ( 2013 ), pp. 1695 -- 1715 . CrossrefISIGoogle Scholar

  • 18.  Y. Dumont and  J. M. Tchuenche , Mathematical studies on the sterile insect technique for the chikungunya disease and Aedes albopictus , J. Math. Biol. , 65 ( 2012 ), pp. 809 -- 854 . CrossrefISIGoogle Scholar

  • 19.  F. Dumortier R. Roussarie and  J. Sotomayor , Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3 , Ergodic Theory Dynam. Systems , 7 ( 1987 ) (3), pp. 375 -- 413 . CrossrefISIGoogle Scholar

  • 20.  F. Dumortier R. Roussarie J. Sotomayor and  K. Zoladek , Bifurcation of Planar Vector Fields, Nilpotent Singularities and Abelian Integrals , Lecture Notes in Math. 1480 , Springer , New York , 1991 . Google Scholar

  • 21.  V. A. Dyck J. Hendrichs and  A. S. Robinson , Sterile Insect Technique---Principles and Practice in Area-Wide Integrated Pest Management , Springer , New York , 2005 . Google Scholar

  • 22.  L. Esteva and  M. H. Yang , Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique , Math. Biosci. , 198 ( 2005 ), pp. 132 -- 147 . CrossrefISIGoogle Scholar

  • 23.  K. R. Fister and  M. McCarthy , Optimal control of insects through sterile insect release and habitat modification , Math. Biosci. , 244 ( 2013 ), pp. 201 -- 212 . CrossrefISIGoogle Scholar

  • 24.  G. Fu R. S. Lees D. Nimmo D. Aw L. Jin P. Gray T. U. Berendonk H. White-Cooper S. Scaife H. Kim Phuc O. Marinotti N. Jasinskiene A. A. James and  L. Alphey , Female-specific flightless phenotype for mosquito control , Proc. Natl. Acad. Sci. USA , 107 ( 2010 ), pp. 4550 -- 4554 . CrossrefISIGoogle Scholar

  • 25.  M. Gazor . Yu, Formal decomposition method and parametric normal form , Internat. J. Bifur. Chaos , 20 ( 2010 ), pp. 3487 -- 3415 . CrossrefISIGoogle Scholar

  • 26.  M. Gazor . Yu, Spectral sequences and parametric normal forms , J. Differential Equations , 252 ( 2013 ), pp. 1003 -- 1031 . CrossrefISIGoogle Scholar

  • 27.  M. Gazor and  M. Moazeni , Parametric normal forms for Bogdanov-Takens singularity; the generalized saddle-node case , Discrete Contin. Dynam. Syst. , 35 ( 2015 ), pp. 205 -- 224 . CrossrefISIGoogle Scholar

  • 28.  E. González-Olivares B. González-Yan͂ez J. Mena Lorca A. Rojas-Palma and  J. D. Flores , Consequences of double Allee effect on the number of limit cycles in a predator-prey model , Comput. Math. Appl. , 62 ( 2011 ), pp. 3449 -- 3463 CrossrefISIGoogle Scholar

  • 29.  J. Huang Y. Gong and  S. Ruan , Bifurcation analysis in a predator-prey model with constant-yield predator harvesting , Discrete Contin. Dyn. Syst. Ser. B , 18 ( 2013 ), pp. 2101 -- 2121 . CrossrefISIGoogle Scholar

  • 30.  J. Huang S. Liu S. Ruan and  X. Zhang , Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting , Commun. Pure Appl. Anal. , 15 ( 2016 ), pp. 1041 -- 1055 . CrossrefISIGoogle Scholar

  • 31.  J. Huang S. Ruan and  J. Song , Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response , J. Differential Equations , 257 ( 2014 ), pp. 1721 -- 1752 . CrossrefISIGoogle Scholar

  • 32.  E. F. Knipling , Possibilities of insect control or eradication through the use of sexually sterile males , J. Econ. Entomol. , 48 ( 1955 ), pp. 459 -- 462 . CrossrefISIGoogle Scholar

  • 33.  E. S. Krafsur , Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting , J. Agr. Entomol. , 15 ( 1998 ), pp. 303 -- 317 . ISIGoogle Scholar

  • 34.  R. S. Lees J. R. L. Gilles J. Hendrichs M. J. B. Vreysen and  K. Bourtzis , Back to the future: The sterile insect technique against mosquito disease vectors , Curr. Opin. Insect Sci. , 10 ( 2015 ), pp. 156 -- 162 . CrossrefISIGoogle Scholar

  • 35.  M. A. Lewis . van den Driessche, Waves of extinction from sterile insect release , Math. Biosci. , 116 ( 1993 ), pp. 221 -- 247 . CrossrefISIGoogle Scholar

  • 36.  C. Li J. Li and  Z. Ma , Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence , Discrete Contin. Dynam. Syst. Ser. B. , 20 ( 2015 ), pp. 1107 -- 1116 . CrossrefISIGoogle Scholar

  • 37.  C. Li and  C. Rousseau , A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: The cusp of order 4 , J. Differential Equations , 79 ( 1989 ), pp. 132 -- 167 . CrossrefISIGoogle Scholar

  • 38.  J. Li , Simple mathematical models for interacting wild and transgenic mosquito populations , Math. Biosci. , 189 ( 2004 ), pp. 39 -- 59 . CrossrefISIGoogle Scholar

  • 39.  J. Li and  L. Cai . Li, Stage-structured wild and sterile mosquito population models and their dynamics , J. Biol. Dynam. , 11 ( 2017 ), pp. 79 -- 101 . CrossrefISIGoogle Scholar

  • 40.  P. N Okorie J. M Marshall O. M Akpa and  O. G Ademowo , Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria , Malaria J. , 13 ( 2014 ), 154 . CrossrefGoogle Scholar

  • 41.  L. Perko , Differential Equations and Dynamical Systems , 3 rd ed., Springer , New York , 2001 . Google Scholar

  • 42.  J. H. Werren L. Baldo and  M. E. Clark , Wolbachia: Master manipulators of invertebrate biology , Nat. Rev. Microbiol. , 6 ( 2008 ), pp. 741 -- 751 . CrossrefISIGoogle Scholar

  • 43.  S. M. White P. Rohani and  S. M. Sait , Modelling pulsed releases for sterile insect techniques: Fitness costs of sterile and transgenic males and the effects on mosquito dynamics , J. Appl. Ecol. , 47 ( 2010 ), pp. 1329 -- 1339 . CrossrefISIGoogle Scholar

  • 44.  F. Takens , Forced oscillations and bifurcations , in Applications of Global Analysis I, Comm. Math. Inst. Rijksuniv. Utrecht 3, Mathematisch Instituut der Rijksuniversiteit Utrecht, the Netherlands , 1974 , pp. 1 -- 59 . Google Scholar

  • 45.  D. D. Thomas C. A. Donnelly R. J. Wood and  L. S. Alphey , Insect population control using a dominant, repressible lethal, genetic system , Science , 287 ( 2000 ), pp. 2474 -- 2476 . CrossrefISIGoogle Scholar

  • 46.  D. Xiao and  S. Ruan , Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting , Fields Inst. Commun. , 21 ( 1999 ), pp. 493 -- 506 . Google Scholar

  • 47.  P. Yu , Computation of normal forms via a perturbation technique , J. Sound Vib. , 211 ( 1998 ), pp. 19 -- 38 . CrossrefISIGoogle Scholar

  • 48.  P. Yu , Simplest normal forms of Hopf and generalized Hopf bifurcations , Internat. J. Bifur. Chaos , 9 ( 1999 ), pp. 1917 -- 1939 . CrossrefISIGoogle Scholar

  • 49.  P. Yu and  A. Y. . Leung, The simplest normal form of Hopf bifurcation , Nonlinearity , 16 ( 2003 ), pp. 277 -- 300 . CrossrefISIGoogle Scholar

  • 50.  Z. Zhang T. Ding W. Huang and  Z. Dong , Qualitative Theory of Differential Equation, Transl. Math. Monogr. 101 , AMS , Providence, RI , 1992 . Google Scholar

  • 51.  H. Zhu S. A. Campbell and  G. S. . Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response , SIAM J. Appl. Math. , 63 ( 2002 ), pp. 636 -- 682 . LinkISIGoogle Scholar