Abstract

We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parameterization. In particular, on one hand Steiner Tree is known to be ${APX}$-hard, and ${W[2]}$-hard on the other, if parameterized by the number of nonterminals (Steiner vertices) in the optimum solution. In contrast to this, we give an efficient parameterized approximation scheme (${EPAS}$), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (${PSAKS}$) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For none of these is an ${EPAS}$ likely to exist for the studied parameter. For Steiner Forest an easy observation shows that the problem is ${APX}$-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is ${W[1]}$-hard. Nevertheless, we show that an ${EPAS}$ exists for Unweighted Directed Steiner Tree, but a ${PSAKS}$ does not. We also prove that there is an ${EPAS}$ and a ${PSAKS}$ for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.

Keywords

  1. Steiner tree
  2. Steiner forest
  3. approximation algorithms
  4. parameterized algorithms

MSC codes

  1. 68W25
  2. 05C85
  3. 68Q25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Agrawal, P. Klein, and R. Ravi, When trees collide: An approximation algorithm for the generalized steiner problem on networks, SIAM J. Comput., 24 (1995), pp. 440--456, https://doi.org/10.1137/s0097539792236237.
2.
A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets Möbius: Fast subset convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007, https://doi.org/10.1145/1250790.1250801.
3.
É. Bonnet and F. Sikora, The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration, in 13th International Symposium on Parameterized and Exact Computation, LIPIcs Leibniz Int. Proc. Inform. 115, C. Paul and M. Pilipczuk, eds., Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2019, pp. 26:1--26:15, https://doi.org/10.4230/LIPIcs.IPEC.2018.26.
4.
A. Borchers and D.-Z. Du, The $k$-Steiner ratio in graphs, SIAM J. Comput., 26 (1997), pp. 857--869, https://doi.org/10.1137/S0097539795281086.
5.
G. Borradaile, P. Klein, and C. Mathieu, An O(n log n) approximation scheme for Steiner tree in planar graphs, ACM Trans. Algorithms, 5 (2009), pp. 1--31, https://doi.org/10.1145/1541885.1541892.
6.
J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità, Steiner tree approximation via iterative randomized rounding, J. ACM, 60 (2013), pp. 1--33, https://doi.org/10.1145/2432622.2432628.
7.
M. Charikar, C. Chekuri, T. yat Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, Approximation algorithms for directed steiner problems, J. Algorithms, 33 (1999), pp. 73--91, https://doi.org/10.1006/jagm.1999.1042.
8.
R. Chitnis, M. T. Hajiaghayi, and G. Kortsarz, Fixed-parameter and approximation algorithms: A new look, in Parameterized and Exact Computation, Springer, New York, 2013, pp. 110--122, https://doi.org/10.1007/978-3-319-03898-8_11.
9.
R. Chitnis, A. E. Feldmann, and P. Manurangsi, Parameterized approximation algorithms for bidirected Steiner network problems, in 26th Annual European Symposium on Algorithms, LIPIcs Leibniz Int. Proc. Inform. 112, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018, pp. 20:1--20:16, https://doi.org/10.4230/LIPIcs.ESA.2018.20.
10.
M. Chlebík and J. Chlebíková, Approximation hardness of the steiner tree problem on graphs, in Algorithm Theory---SWAT 2002, Springer, Berlin, 2002, pp. 170--179, https://doi.org/10.1007/3-540-45471-3_18.
11.
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015, https://doi.org/10.1007/978-3-319-21275-3.
12.
I. Dinur and D. Steurer, Analytical approach to parallel repetition, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, 2014, https://doi.org/10.1145/2591796.2591884.
13.
M. Dom, D. Lokshtanov, and S. Saurabh, Kernelization lower bounds through colors and IDs, ACM Trans. Algorithms, 11 (2014), pp. 1--20, https://doi.org/10.1145/2650261.
14.
R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, New York, 1999, https://doi.org/10.1007/978-1-4612-0515-9.
15.
S. E. Dreyfus and R. A. Wagner, The steiner problem in graphs, Networks, 1 (1971), pp. 195--207, https://doi.org/10.1002/net.3230010302.
16.
D. Eisenstat, P. Klein, and C. Mathieu, An efficient polynomial-time approximation scheme for steiner forest in planar graphs, in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2012, pp. 626--638, https://doi.org/10.1137/1.9781611973099.53.
17.
A. E. Feldmann and D. Marx, The complexity landscape of fixed-parameter directed Steiner network problems, in 43rd International Colloquium on Automata, Languages, and Programming, LIPIcs Leibniz Int. Proc. Inform. 55, Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2016, pp. 27:1--27:14, https://doi.org/10.4230/LIPIcs.ICALP.2016.27.
18.
B. Fuchs, W. Kern, D. Molle, S. Richter, P. Rossmanith, and X. Wang, Dynamic programming for minimum Steiner trees, Theory Comput. Syst., 41 (2007), pp. 493--500, https://doi.org/10.1007/s00224-007-1324-4.
19.
J. Guo, R. Niedermeier, and O. Suchý, Parameterized complexity of arc-weighted directed Steiner problems, SIAM J. Discrete Math., 25 (2011), pp. 583--599, https://doi.org/10.1137/100794560.
20.
E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability, in Proceedings of the 35th ACM Symposium on Theory of Computing, 2003, pp. 585--594, https://doi.org/10.1145/780542.780628.
21.
R. Hušek, T. Toufar, D. Knop, T. Masařík, and E. Eiben, Steiner Tree Heuristics for PACE 2018 Challenge Track C, https://github.com/goderik01/PACE2018, 2018.
22.
R. Hušek, D. Knop, and T. Masařík, Approximation algorithms for Steiner tree based on star contractions: A unified view, in Proceedings of the 15th International Symposium on Parameterized and Exact Computation, 2020, pp. 16:1--16:18, https://doi.org/10.4230/LIPIcs.IPEC.2020.16.
23.
F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem, Ann. Discrete Math. 53, Elsevier, Amsterdam, 1992, https://doi.org/10.1016/s0167-5060(08)x7008-6.
24.
M. Jones, D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and O. Suchý, Parameterized complexity of directed Steiner tree on sparse graphs, SIAM J. Discrete Math., 31 (2017), pp. 1294--1327, https://doi.org/10.1137/15M103618X.
25.
R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Plenum, New York, 1972, pp. 85--103, https://doi.org/10.1007/978-1-4684-2001-2_9.
26.
D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh, Lossy kernelization, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 224--237, https://doi.org/10.1145/3055399.3055456.
27.
D. Mölle, S. Richter, and P. Rossmanith, Enumerate and expand: Improved algorithms for connected vertex cover and tree cover, Theory Comput. Syst., 43 (2007), pp. 234--253, https://doi.org/10.1007/s00224-007-9089-3.
28.
J. Nederlof, Fast polynomial-space algorithms using möbius inversion: Improving on Steiner tree and related problems, in Proceedings of the 36th International Colloquium on Automata, Languages and Programming, Rhodes, Greece, Part I, 2009, pp. 713--725, https://doi.org/10.1007/978-3-642-02927-1_59.
29.
M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Network sparsification for Steiner problems on planar and bounded-genus graphs, in Proceedings of the IEEE 55th Annual Symposium on Foundations of Computer Science, 2014, https://doi.org/10.1109/focs.2014.37.
30.
K. C. Srikanta, B. Laekhanukit, and P. Manurangsi, On the parameterized complexity of approximating dominating set, J. ACM, 66 (2019), https://doi.org/10.1145/3325116.
31.
O. Suchý, Extending the kernel for planar Steiner tree to the number of steiner vertices, Algorithmica, 79 (2017), pp. 189--210, https://doi.org/10.1007/s00453-016-0249-1.
32.
D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press, Cambridge, UK, 2011, https://doi.org/10.1017/cbo9780511921735.
33.
A. Zelikovsky, An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, 9 (1993), pp. 463--470, https://doi.org/10.1007/BF01187035.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 546 - 574
ISSN (online): 1095-7146

History

Submitted: 4 September 2018
Accepted: 13 November 2020
Published online: 29 March 2021

Keywords

  1. Steiner tree
  2. Steiner forest
  3. approximation algorithms
  4. parameterized algorithms

MSC codes

  1. 68W25
  2. 05C85
  3. 68Q25

Authors

Affiliations

Funding Information

OP VVV MEYS : CZ.02.1.01/0.0/0.0/16 019/0000765
SVV-2017-260452
H2020 European Research Council https://doi.org/10.13039/100010663 : ERC-2014-CoG 647557
Grantová Agentura České Republiky https://doi.org/10.13039/501100001824 : 17-09142S, 17-10090Y
Přírodovědecká Fakulta, Univerzita Karlova https://doi.org/10.13039/100008579 : UNCE/SCI/004, GAUK 1514217

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media