Abstract

Applications such as political redistricting demand quantitative measures of geometric compactness to distinguish between simple and contorted shapes. While the isoperimetric quotient, or ratio of area to perimeter squared, is commonly used in practice, it is sensitive to noisy data and irrelevant geographic features like coastline. These issues are addressed in theory by the isoperimetric profile, which plots the minimum perimeter needed to inscribe regions of different prescribed areas within the boundary of a shape. Efficient algorithms for computing this profile, however, are not known in practice. Hence, in this paper, we propose a convex Eulerian relaxation of the isoperimetric profile using total variation. We prove theoretical properties of our relaxation, showing that it still satisfies an isoperimetric inequality and yields a convex function of the prescribed area. Furthermore, we provide a discretization of the problem, an optimization technique, and experiments demonstrating the value of our relaxation.

Keywords

  1. isoperimetric profile
  2. compactness measures
  3. total variation

MSC codes

  1. 49Q10
  2. 90C90

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press Oxford, 2000.
2.
R. Barnes and J. Solomon, Gerrymandering and compactness: Implementation flexibility and abuse, Political Anal., to appear.
3.
S. Bartels, Total variation minimization with finite elements: Convergence and iterative solution, SIAM J. Numer. Anal., 50 (2012), pp. 1162--1180, https://doi.org/10.1137/11083277X.
4.
A. Besicovitch, A variant of a classical isoperimetric problem, Quart. J. Math. Oxford Ser., 20 (1949), pp. 84--94.
5.
A. Besicovitch, Variants of a classical isoperimetric problem, Quart. J. Math. Oxford Ser. (2), 3 (1952), pp. 42--49.
6.
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer Science & Business Media, 2010.
7.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learning, 3 (2011), pp. 1--122.
8.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
9.
A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Math. 1694, Springer Science & Business Media, 1998.
10.
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492--526, https://doi.org/10.1137/090769521.
11.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, 2010.
12.
G. Carlier, M. Comte, and G. Peyré, Approximation of maximal Cheeger sets by projection, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 139--150.
13.
A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An introduction to total variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery, Radon Ser. Comput. Appl. Math. 9, Walter de Gruyter, Berlin, 2010, pp. 263--340.
14.
A. Chambolle, V. Duval, G. Peyré, and C. Poon, Geometric properties of solutions to the total variation denoising problem, Inverse Problems, 33 (2016), 015002.
15.
A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25 (2016), pp. 161--319, https://doi.org/10.1017/S096249291600009X.
16.
Common Cause v. Rucho, United States District Court, Middle District of North Carolina, 2017.
17.
Common Cause v. Rucho, Supreme Court of the United States, 2019.
18.
Cooper v. Harris, Supreme Court of the United States, 2017.
19.
H. T. Croft, K. Falconer, and R. K. Guy, Unsolved Problems in Geometry: Unsolved Problems in Intuitive Mathematics, Vol. 2, Springer Science & Business Media, 2012.
20.
M. Duchin and B. E. Tenner, Discrete Geometry for Electoral Geography, preprint, https://arxiv.org/abs/1808.05860, 2018.
21.
K. Ehrenburg, Studien zur messung der horizontalen gliederung von erdräumen, Verhandlungen der Physikalisch-medizinische Gesellschaft zu Würzburg, 25--26 (1892), pp. 41--92.
22.
W. H. Fleming and R. Rishel, An integral formula for total gradient variation, Arch. Math. (Basel), 11 (1960), pp. 218--222.
23.
E. Gonzalez, U. Massari, and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., 32 (1983), pp. 25--37.
24.
M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lect. Notes Control Inf. Sci. 371, Springer-Verlag, 2008, pp. 95--110, http://stanford.edu/~boyd/graph_dcp.html.
25.
M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx, 2014.
26.
Harris v. McCrory, United States District Court, Middle District of North Carolina, 2016.
27.
M. Herrmann, R. Herzog, S. Schmidt, J. Vidal-Nún͂ez, and G. Wachsmuth, Discrete Total Variation with Finite Elements and Applications to Imaging, preprint, https://arxiv.org/abs/1804.07477, 2018.
28.
A. Kaufman, G. King, and M. Komisarchik, How to measure legislative district compactness if you only know it when you see it, Amer. J. Polit. Sci., to appear, http://j.mp/Compactness.
29.
B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225 (2006), pp. 103--118.
30.
M.-J. Lai, B. Lucier, and J. Wang, The convergence of a central-difference discretization of Rudin-Osher-Fatemi model for image denoising, in International Conference on Scale Space and Variational Methods in Computer Vision, Springer, 2009, pp. 514--526.
31.
J. B. Lasserre, Convexity in semialgebraic geometry and polynomial optimization, SIAM J. Optim., 19 (2009), pp. 1995--2014, https://doi.org/10.1137/080728214.
32.
G. P. Leonardi, R. Neumayer, and G. Saracco, The Cheeger constant of a Jordan domain without necks, Calc. Var. Partial Differential Equations, 56 (2017), 164.
33.
G. P. Leonardi and A. Pratelli, On the Cheeger sets in strips and non-convex domains, Calc. Var. Partial Differential Equations, 55 (2016), 15.
34.
G. P. Leonardi and G. Saracco, Minimizers of the prescribed curvature functional in a Jordan domain with no necks, in preparation.
35.
MOSEK ApS, The MOSEK Optimization Toolbox for MATLAB, 2017, http://docs.mosek.com/8.1/toolbox/index.html.
36.
E. Parini, An introduction to the Cheeger problem, Surv. Math. Appl., 6 (2011), pp. 9--21.
37.
D. D. Polsby and R. D. Popper, The third criterion: Compactness as a procedural safeguard against partisan gerrymandering, Yale Law Policy Rev., 9 (1991), pp. 301--353.
38.
A. Pratelli and G. Saracco, On the isoperimetric problem with double density, Nonlinear Anal., 177 (2018), pp. 733--752.
39.
P. Raghavendra, D. Steurer, and P. Tetali, Approximations for the isoperimetric and spectral profile of graphs and related parameters, in Proceedings of the 2010 ACM International Symposium on Theory of Computing (STOC'10), ACM, 2010, pp. 631--640.
40.
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1997.
41.
A. Ros, The isoperimetric problem, in Global Theory of Minimal Surfaces, Vol. 2, AMS, 2001, pp. 175--209.
42.
T. Rothvoß, The Lasserre hierarchy in approximation algorithms, Lecture Notes for the MAPSP, 2013.
43.
L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259--268.
44.
W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987.
45.
E. Stredulinsky and W. P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7 (1997), pp. 653--677.
46.
B. Warner, Retired Judges Unveil New NC Congressional Map, 2016, https://www.commoncause.org/north-carolina/press-release/retired-judges-unveil-new/.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 585 - 613
ISSN (online): 2470-6566

History

Submitted: 21 September 2018
Accepted: 23 August 2019
Published online: 19 November 2019

Keywords

  1. isoperimetric profile
  2. compactness measures
  3. total variation

MSC codes

  1. 49Q10
  2. 90C90

Authors

Affiliations

Funding Information

Prof. Amar G. Bose Research Grant
Amazon Research Award
Army Research Office https://doi.org/10.13039/100000183 : W911NF-12-R-0011
Massachusetts Institute of Technology https://doi.org/10.13039/100006919
National Science Foundation https://doi.org/10.13039/100000001 : IIS-1838071

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media