Abstract

We present some lower bounds for regular solutions of Schrödinger equations with bounded and time dependent complex potentials. Assuming that the solution has some positive mass at time zero within a ball of certain radius, we prove that this mass can be observed if one looks at the solution and its gradient in space-time regions outside of that ball.

Keywords

  1. Schrödinger
  2. PDE
  3. uniqueness

MSC codes

  1. 35Q41
  2. 39A12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Anantharaman and F. Macià, Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS), 16 (2014), pp. 1253--1288.
2.
J. Bourgain, N. Burq, and M. Zworski, Control for Schrödinger operators on 2-tori: Rough potentials, J. Eur. Math. Soc. (JEMS), 15 (2013), pp. 1597--1628.
3.
N. Burq and M. Zworski, Control for Schrödinger operators on tori, Math. Res. Lett., 19 (2012), pp. 309--324.
4.
L. Escauriaza, C.E. Kenig, and G. Ponce, Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS), 10 (2008), pp. 883--907.
5.
L. Escauriaza, C.E. Kenig, G. Ponce, and L. Vega, On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations, 31 (2006), pp. 1811--1823.
6.
L. Escauriaza, C.E. Kenig, G. Ponce, and L. Vega, Uniqueness properties of solutions to Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 49 (2012), pp. 415--442.
7.
C.E. Kenig, G. Ponce, and L. Vega, A theorem of Paley--Wiener type for Schrödinger evolutions, Ann. Sci. Éc. Norm. Super. (4), 47 (2014), pp. 539--557.
8.
F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, St. Petersburg Math. J., 5 (1994), pp. 663--717.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 3324 - 3336
ISSN (online): 1095-7154

History

Submitted: 2 October 2018
Accepted: 29 May 2019
Published online: 21 August 2019

Keywords

  1. Schrödinger
  2. PDE
  3. uniqueness

MSC codes

  1. 35Q41
  2. 39A12

Authors

Affiliations

Funding Information

ERCEA : 669689 - HADE
MEIC : MTM2014-53850-P, SEV-2013-0323
Eusko Jaurlaritza https://doi.org/10.13039/501100003086

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media