Methods and Algorithms for Scientific Computing

An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier--Stokes Equations at High Reynolds Number

Abstract

In [M. Benzi and M. A. Olshanskii, SIAM J. Sci. Comput., 28 (2006), pp. 2095--2113] a preconditioner of augmented Lagrangian type was presented for the two-dimensional stationary incompressible Navier--Stokes equations that exhibits convergence almost independent of Reynolds number. The algorithm relies on a highly specialized multigrid method involving a custom prolongation operator and for robustness requires the use of piecewise constant finite elements for the pressure. However, the prolongation operator and velocity element used do not directly extend to three dimensions: the local solves necessary in the prolongation operator do not satisfy the inf-sup condition. In this work we generalize the preconditioner to three dimensions, proposing alternative finite elements for the velocity and prolongation operators for which the preconditioner works robustly. The solver is effective at high Reynolds number: on a three-dimensional lid-driven cavity problem with approximately one billion degrees of freedom, the average number of Krylov iterations per Newton step varies from 4.5 at Re = 10 to 3 at Re = 1000 and 5 at Re = 5000.

Keywords

  1. Navier--Stokes
  2. subspace correction methods
  3. multigrid
  4. high-performance computing
  5. augmented Lagrangian

MSC codes

  1. 65N55
  2. 65F08
  3. 65N30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. S. Aln\aes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified Form Language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Softw., 40 (2014), 9, https://doi.org/10.1145/2566630.
2.
D. N. Arnold, R. Falk, and R. Winther, Preconditioning in \textbfH (div) and applications, Math. Comp., 66 (1997), pp. 957--984, https://doi.org/10.1090/S0025-5718-97-00826-0.
3.
D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in \textbf H (div) and H (curl), Numer. Math., 85 (2000), pp. 197--217, https://doi.org/10.1007/pl00005386.
4.
C. Bacuta, A unified approach for Uzawa algorithms, SIAM J. Numer. Anal., 44 (2006), pp. 2633--2649, https://doi.org/10.1137/050630714.
5.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11 - Revision 3.8, Argonne National Laboratory, Lemont, IL, 2017, http://www.mcs.anl.gov/petsc.
6.
M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1--137, https://doi.org/10.1017/S0962492904000212.
7.
M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 28 (2006), pp. 2095--2113, https://doi.org/10.1137/050646421.
8.
M. Benzi and M. A. Olshanskii, Field-of-values convergence analysis of augmented Lagrangian preconditioners for the linearized Navier--Stokes problem, SIAM J. Numer. Anal., 49 (2011), pp. 770--788, https://doi.org/10.1137/100806485.
9.
M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 66 (2011), pp. 486--508, https://doi.org/10.1002/fld.2267.
10.
C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp., 44 (1985), pp. 71--79, https://doi.org/10.2307/2007793.
11.
C. Bernardi and G. Raugel, A conforming finite element method for the time-dependent Navier--Stokes equations, SIAM J. Numer. Anal., 22 (1985), pp. 455--473, https://doi.org/10.1137/0722027.
12.
D. Boffi, F. Brezzi, and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Compatibility Conditions, and Applications, D. Boffi and L. Gastaldi, eds., Lecture Notes in Math. 1939, Springer, Berlin, Heidelberg, 2008, pp. 45--100.
13.
D. Boffi and C. Lovadina, Analysis of new augmented Lagrangian formulations for mixed finite element schemes, Numer. Math., 75 (1997), pp. 405--419, https://doi.org/10.1007/s002110050246.
14.
S. Börm and S. L. Borne, $\mathcal{H}$-LU factorization in preconditioners for augmented Lagrangian and grad-div stabilized saddle point systems, Int. J. Numer. Methods Fluids, 68 (2010), pp. 83--98, https://doi.org/10.1002/fld.2495.
15.
D. Braess and R. Sarazin, An efficient smoother for the Stokes problem, Appl. Numer. Math., 23 (1997), pp. 3--19, https://doi.org/10.1016/s0168-9274(96)00059-1.
16.
A. Brandt and O. E. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, 2nd ed., Classics Appl. Math. 67, SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611970753.
17.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer-Verlag, New York, 2008.
18.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-3172-1.
19.
A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199--259, https://doi.org/10.1016/0045-7825(82)90071-8.
20.
J. Brown, M. Knepley, D. May, L. McInnes, and B. Smith, Composable linear solvers for multiphysics, in Proceedings of the 11th International Symposium on Parallel and Distributed Computing (ISPDC), 2012, pp. 55--62, https://doi.org/10.1109/ISPDC.2012.16.
21.
P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu, Composing scalable nonlinear algebraic solvers, SIAM Rev., 57 (2015), pp. 535--565, https://doi.org/10.1137/130936725.
22.
A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967), pp. 12--26, https://doi.org/10.1016/0021-9991(67)90037-x.
23.
B. Cockburn, G. Kanschat, and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier--Stokes equations, J. Sci. Comput., 31 (2006), pp. 61--73, https://doi.org/10.1007/s10915-006-9107-7.
24.
A. C. de Niet and F. W. Wubs, Two preconditioners for saddle point problems in fluid flows, Int. J. Numer. Methods Fluids, 54 (2007), pp. 355--377, https://doi.org/10.1002/fld.1401.
25.
M. Eiermann and O. G. Ernst, Geometric aspects of the theory of Krylov subspace methods, Acta Numer., 10 (2001), pp. 251--312, https://doi.org/10.1017/S0962492901000046.
26.
H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651--1668, https://doi.org/10.1137/040608817.
27.
H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier--Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33--46, https://doi.org/10.1137/0917004.
28.
H. C. Elman, D. Loghin, and A. J. Wathen, Preconditioning techniques for Newton's method for the incompressible Navier--Stokes equations, BIT, 43 (2003), pp. 961--974, https://doi.org/10.1023/b:bitn.0000014565.86918.df.
29.
H. C. Elman, A. Ramage, and D. J. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Rev., 56 (2014), pp. 261--273, https://doi.org/10.1137/120891393.
30.
H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd ed., Oxford University Press, Oxford, 2014.
31.
M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Stud. Math. Appl. 15, North-Holland, Amsterdam, 1983.
32.
M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, ML $5.0$ Smoothed Aggregation User's Guide, Tech. Report SAND2006-2649, Sandia National Laboratories, Albuquerque, NM, 2006.
33.
C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309--1331, https://doi.org/10.1002/nme.2579.
34.
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986.
35.
A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465--469, https://doi.org/10.1137/S0895479894275030.
36.
J. Guzmán and M. Neilan, Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence--Free Approximations in Arbitrary Dimensions, 2017, https://arxiv.org/abs/1710.08044.
37.
S. Hamilton, M. Benzi, and E. Haber, New multigrid smoothers for the Oseen problem, Numer. Linear Algebra Appl., 17 (2010), pp. 557--576, https://doi.org/10.1002/nla.707.
38.
X. He, M. Neytcheva, and S. S. Capizzano, On an augmented Lagrangian-based preconditioning of Oseen type problems, BIT, 51 (2011), pp. 865--888, https://doi.org/10.1007/s10543-011-0334-4.
39.
X. He, C. Vuik, and C. M. Klaij, Combining the augmented Lagrangian preconditioner with the simple Schur complement approximation, SIAM J. Sci. Comput., 40 (2018), pp. A1362--A1385, https://doi.org/10.1137/17M1144775.
40.
T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization, Int. J. Numer. Methods Fluids, 71 (2012), pp. 118--134, https://doi.org/10.1002/fld.3654.
41.
R. Hiptmair, Multigrid method for ${H}({div})$ in three dimensions, Electron. Trans. Numer. Anal., 6 (1997), pp. 133--152.
42.
M. Homolya, L. Mitchell, F. Luporini, and D. A. Ham, TSFC: A structure-preserving form compiler, SIAM J. Sci. Comput., 40 (2018), pp. C401--C428, https://doi.org/10.1137/17M1130642.
43.
I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput., 23 (2001), pp. 1050--1051, https://doi.org/10.1137/S1064827500377435.
44.
V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59 (2017), pp. 492--544, https://doi.org/10.1137/15m1047696.
45.
V. John and G. Matthies, Higher-order finite element discretizations in a benchmark problem for incompressible flows, Int. J. Numer. Methods Fluids, 37 (2001), pp. 885--903, https://doi.org/10.1002/fld.195.
46.
D. Kay, D. Loghin, and A. Wathen, A preconditioner for the steady-state Navier--Stokes equations, SIAM J. Sci. Comput., 24 (2002), pp. 237--256, https://doi.org/10.1137/S106482759935808X.
47.
R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Softw., 30 (2004), pp. 502--516, https://doi.org/10.1145/1039813.1039820.
48.
R. C. Kirby and L. Mitchell, Solver composition across the PDE/linear algebra barrier, SIAM J. Sci. Comput., 40 (2018), pp. C76--C98, https://doi.org/10.1137/17M1133208.
49.
M. G. Knepley and D. A. Karpeev, Flexible Representation of Computational Meshes, Tech. Report ANL/MCS-P1295-1005, Argonne National Laboratory, Lemont, IL, 2005.
50.
M. G. Knepley and D. A. Karpeev, Mesh algorithms for PDE with Sieve I: Mesh distribution, Sci. Program., 17 (2009), pp. 215--230, https://doi.org/10.1155/2009/948613.
51.
G. M. Kobel'kov, On solving the Navier-Stokes equations at large Reynolds numbers, Russian J. Numer. Anal. Math. Modelling, 10 (1995), pp. 33--40, https://doi.org/10.1515/rnam.1995.10.1.33.
52.
Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov, Robust subspace correction methods for nearly singular systems, Math. Models Methods Appl. Sci., 17 (2007), pp. 1937--1963, https://doi.org/10.1142/s0218202507002522.
53.
X. S. Li and J. W. Demmel, SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Softw., 29 (2003), pp. 110--140.
54.
X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU Users' Guide, Tech. Report LBNL-44289, Lawrence Berkeley National Laboratory, Berkeley, CA, 1999.
55.
D. Loghin and A. J. Wathen, Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25 (2004), pp. 2029--2049, https://doi.org/10.1137/S1064827502418203.
56.
K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl., 18 (2011), pp. 1--40, https://doi.org/10.1002/nla.716.
57.
D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-scale multigrid components within PETSc, in Proceedings of the Platform for Advanced Scientific Computing Conference, 2016, 5, https://doi.org/10.1145/2929908.2929913.
58.
M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969--1972, https://doi.org/10.1137/S1064827599355153.
59.
M. A. Olshanskii and M. Benzi, An augmented Lagrangian approach to linearized problems in hydrodynamic stability, SIAM J. Sci. Comput., 30 (2008), pp. 1459--1473, https://doi.org/10.1137/070691851.
60.
M. A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp., 73 (2004), pp. 1699--1718, https://doi.org/10.1090/s0025-5718-03-01629-6.
61.
M. A. Olshanskii and A. Reusken, Convergence analysis of a multigrid method for a convection-dominated model problem, SIAM J. Numer. Anal., 42 (2004), pp. 1261--1291, https://doi.org/10.1137/s0036142902418679.
62.
M. A. Olshanskii and E. E. Tyrtyshnikov, Iterative Methods for Linear Systems: Theory and Applications, SIAM, Philadelphia, 2014, https://doi.org/10.1137/1.9781611973464.
63.
S. Patankar, Numerical Heat Transfer and Fluid Flow, 1st ed., Hemisphere Series on Computational Methods in Mechanics and Thermal Science, Taylor & Francis, London, 1980.
64.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer-Verlag, Berlin, 1994.
65.
A. Ramage, A multigrid preconditioner for stabilised discretisations of advection\textendashdiffusion problems, J. Comput. Appl. Math., 110 (1999), pp. 187--203, https://doi.org/10.1016/s0377-0427(99)00234-4.
66.
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Softw., 43 (2017), 24, https://doi.org/10.1145/2998441.
67.
Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461--469, https://doi.org/10.1137/0914028.
68.
J. Schöberl, Multigrid methods for a parameter dependent problem in primal variables, Numer. Math., 84 (1999), pp. 97--119, https://doi.org/10.1007/s002110050465.
69.
J. Schöberl, Robust Multigrid Methods for Parameter Dependent Problems, Ph.D. thesis, Johannes Kepler Universität Linz, Linz, Austria, 1999.
70.
L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 111--143.
71.
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--493, http://www.jstor.org/stable/2008497.
72.
F. Shakib, T. J. R. Hughes, and Z. Johan, A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89 (1991), pp. 141--219, https://doi.org/10.1016/0045-7825(91)90041-4.
73.
T. Shih, C. Tan, and B. Hwang, Effects of grid staggering on numerical schemes, Int. J. Numer. Methods Fluids, 9 (1989), pp. 193--212.
74.
D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems Part II: Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352--1367, https://doi.org/10.1137/0731070.
75.
G. Starke, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Math., 78 (1997), pp. 103--117, https://doi.org/10.1007/s002110050306.
76.
R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France, 98 (1968), pp. 115--152.
77.
S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, Lect. Notes Comput. Sci. Eng. 6, Springer-Verlag, Berlin, Heidelberg, 1999.
78.
M. ur Rehman, C. Vuik, and G. Segal, A comparison of preconditioners for incompressible Navier-Stokes solvers, Int. J. Numer. Methods Fluids, 57 (2008), pp. 1731--1751, https://doi.org/10.1002/fld.1684.
79.
S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys., 65 (1986), pp. 138--158, https://doi.org/10.1016/0021-9991(86)90008-2.
80.
A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329--376, https://doi.org/10.1017/S0962492915000021.
81.
C.-T. Wu and H. C. Elman, Analysis and comparison of geometric and algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 28 (2006), pp. 2208--2228, https://doi.org/10.1137/060662940.
82.
Software used in “An augmented Lagrangian preconditioner for the $3$D stationary incompressible Navier--Stokes equations at high Reynolds number,” 2019, https://doi.org/10.5281/zenodo.3247427.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3073 - A3096
ISSN (online): 1095-7197

History

Submitted: 8 October 2018
Accepted: 10 June 2019
Published online: 8 October 2019

Keywords

  1. Navier--Stokes
  2. subspace correction methods
  3. multigrid
  4. high-performance computing
  5. augmented Lagrangian

MSC codes

  1. 65N55
  2. 65F08
  3. 65N30

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/K030930/1, EP/M011151/1, EP/M011054/1, EP/L000407/1, EP/L015803/1
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/N032861/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media