Abstract

We consider the enumeration of walks on the nonnegative lattice $\mathbb{N}^{d},$ with steps defined by a set $\mathcal{S}\subset \{-1, 0, 1\}^d\backslash\{{0}\}$. Previous work in this area has established asymptotics for the number of walks in certain families of models by applying the techniques of analytic combinatorics in several variables (ACSV), where one encodes the generating function of a lattice path model as the diagonal of a multivariate rational function. Melczer and Mishna obtained asymptotics when the set of steps $\mathcal{S}$ is symmetric over every axis; in this setting one can always apply the methods of ACSV to a multivariate rational function whose set of singularities is a smooth manifold (the simplest case). Here we go further, providing asymptotics for models with generating functions that must be encoded by multivariate rational functions having nonsmooth singular sets. In the process, our analysis connects past work to deeper structural results in the theory of ACSV. One application is a closed form for asymptotics of models defined by step sets that are symmetric over all but one axis. As a special case, we apply our results when $d=2$ to give a rigorous proof of asymptotics conjectured by Bostan and Kauers; asymptotics for walks returning to boundary axes and the origin are also given.

Keywords

  1. lattice path enumeration
  2. kernel method
  3. analytic combinatorics
  4. D-finite
  5. generating function

MSC codes

  1. 05A16
  2. 05A15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lattice paths, Theoret. Comput. Sci., 281 (2002), pp. 37--80.
2.
A. Bostan, M. Bousquet-Mélou, M. Kauers, and S. Melczer, On 3-dimensional lattice walks confined to the positive octant, Ann. Combin., 20 (2016), pp. 661--704.
3.
A. Bostan, M. Bousquet-Mélou, and S. Melczer, Counting Walks with Large Steps in an Orthant, arXiv:1806.00968, 2018.
4.
A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, European J. Combin., 61 (2017), pp. 242--275.
5.
A. Bostan and M. Kauers, Automatic classification of restricted lattice walks, in Proceedings of FPSAC, 2009, pp. 201--215.
6.
A. Bostan and M. Kauers, The complete generating function for Gessel walks is algebraic, Proc. Amer. Math. Soc., 138 (2010), pp. 3063--3078.
7.
A. Bostan, I. Kurkova, and K. Raschel, A human proof of Gessel's lattice path conjecture, Trans. Amer. Math. Soc., 369 (2017), pp. 1365--1393.
8.
A. Bostan, K. Raschel, and B. Salvy, Non-D-finite excursions in the quarter plane, J. Combin. Theory Ser. A, 121 (204), pp. 45--63.
9.
M. Bousquet-Mélou, Walks in the quarter plane: Kreweras' algebraic model, Ann. Appl. Probab., 15 (2005), pp. 1451--1491.
10.
M. Bousquet-Mélou, An elementary solution of Gessel's walks in the quadrant, Adv. Math., 303 (2016), pp. 1171--1189.
11.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, in Algorithmic Probability and Combinatorics, Contemp. Math. 520, AMS, Providence, RI, 2010, pp. 1--40.
12.
M. Bousquet-Mélou and M. Petkovšek, Walks confined in a quadrant are not always D-finite, Theoret. Comput. Sci., 307 (2003), pp. 257--276.
13.
M. Bousquet-Mélou and M. Petkovšek, Linear recurrences with constant coefficients: The multivariate case, Discrete Math., 225 (2000), pp. 51--75.
14.
G. Christol, Diagonales de fractions rationnelles, in Séminaire de Théorie des Nombres, Paris 1986--87, Progr. Math. 75, Birkhäuser Boston, Boston, MA, 1988, pp. 65--90.
15.
J. Courtiel, S. Melczer, M. Mishna, and K. Raschel, Weighted lattice walks and universality classes, J. Combin. Theory Ser. A, 152 (2017), pp. 255--302.
16.
D. Denisov and V. Wachtel, Random walks in cones, Ann. Probab., 43 (2015), pp. 992--1044.
17.
J. Duraj, Random walks in cones: The case of nonzero drift, Stochastic Process. Appl., 124 (2014), pp. 1503--1518.
18.
G. Fayolle, R. Iasnogorodski, and V. Malyshev, Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications, Appl. Math. (N.Y.) 40, Springer, New York, 1999.
19.
G. Fayolle and K. Raschel, Some exact asymptotics in the counting of walks in the quarter plane, in Proceedings of AofA'12, 2012, pp. 109--124.
20.
T. Feierl, Asymptotics for the number of walks in a Weyl chamber of type $B$, Random Structures Algorithms, 45 (2014), pp. 261--305.
21.
T. Feierl, Asymptotics for the Number of Zero Drift Reflectable Walks in a Weyl Chamber of Type A, arXiv:1806.05998, 2018.
22.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, UK, 2009.
23.
R. Garbit and K. Raschel, On the exit time from a cone for random walks with drift, Rev. Mat. Iberoam., 32 (2016), pp. 511--532.
24.
I. M. Gessel A factorization for formal Laurent series and lattice path enumeration, J. Combin. Theory Ser. A, 28 (1980), pp. 321--337.
25.
I. M. Gessel, A probabilistic method for lattice path enumeration, J. Statist. Plann. Inference, 14 (1986), pp. 49--58.
26.
I. M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc. Amer. Math. Soc., 115 (1992), pp. 27--31.
27.
D. J. Grabiner and P. Magyar, Random walks in Weyl chambers and the decomposition of tensor powers, J. Algebraic Combin., 2 (1993), pp. 239--260.
28.
M. Kauers, C. Koutschan, and D. Zeilberger, Proof of Ira Gessel's lattice path conjecture, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 11502--11505.
29.
C. Krattenthaler, Lattice path enumeration, in Handbook of Enumerative Combinatorics, M. Bóna, ed., Discrete Math. Appl., CRC Press, Boca Raton, FL, 2015, pp. 589--678.
30.
G. Kreweras, Sur une classe de problémes liés au treillis des partitions d'entiers, in Cahiers B.U.R.O., Institut de Statistique, Paris, 1965, pp. 5--105.
31.
I. Kurkova and K. Raschel, On the functions counting walks with small steps in the quarter plane, Publ. Math. Inst. Hautes Études Sci., 116 (2012), pp. 69--114.
32.
L. Lipschitz The diagonal of a $D$-finite power series is $D$-finite, J. Algebra, 113 (1988), pp. 373--378.
33.
V. A. Malyšev, Wiener-Hopf equations in the quarter-plane, discrete groups and automorphic functions, Mat. Sb. (N.S.), 84 (1971), pp. 499--525.
34.
S. Melczer, Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration, Ph.D. thesis, University of Waterloo and ENS Lyon, 2017.
35.
S. Melczer and M. Mishna, Singularity analysis via the iterated kernel method, Combin. Probab. Comput., 23 (2014), pp. 861--888.
36.
S. Melczer and M. Mishna, Asymptotic lattice path enumeration using diagonals, Algorithmica, 75 (2016), pp. 782--811.
37.
S. Melczer and M. C. Wilson, Asymptotics of lattice walks via analytic combinatorics in several variables, in Proceedings of FPSAC 2016, 2016, pp. 863--874.
38.
M. Mishna, Classifying lattice walks in the quarter plane, in Proceedings of the 19th International Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, 2007.
39.
M. Mishna, Classifying lattice walks restricted to the quarter plane, J. Combin. Theory Ser. A, 116 (2009), pp. 460--477.
40.
S. G. Mohanty, Lattice Path Counting and Applications, Academic Press, New York, 1979.
41.
T. V. Narayana, Lattice Path Combinatorics with Statistical Applications, Math. Expositions 23, University of Toronto Press, 1979.
42.
R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences. II. Multiple points of the singular variety, Combin. Probab. Comput., 13 (2004), pp. 735--761.
43.
R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences: I. Smooth points of the singular variety, J. Combin. Theory, Ser. A, 97 (2002), pp. 129--161.
44.
R. Pemantle and M. C. Wilson, Analytic Combinatorics in Several Variables. Cambridge University Press, Cambridge, UK, 2013.
45.
M. Petkovšek, The irrational chess knight, in Proceedings of FPSAC'98, Toronto, 1998, pp. 513--522.
46.
A. Raichev and M. C. Wilson, Asymptotics of coefficients of multivariate generating functions: Improvements for smooth points, Electron. J. Combin., 15 (2008).
47.
T. Tate and S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, J. Funct. Anal., 217 (2004), pp. 402--447.
48.
G. Xin, The Ring of Malcev-Neumann Series and the Residue Theorem, Ph.D. thesis, Brandeis University, 2004.
49.
D. Zeilberger, André's reflection proof generalized to the many-candidate ballot problem, Discrete Math., 44 (1983), pp. 325--326.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2140 - 2174
ISSN (online): 1095-7146

History

Submitted: 15 October 2018
Accepted: 3 September 2019
Published online: 7 November 2019

Keywords

  1. lattice path enumeration
  2. kernel method
  3. analytic combinatorics
  4. D-finite
  5. generating function

MSC codes

  1. 05A16
  2. 05A15

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.