Abstract

A fundamental tool in topological data analysis is persistent homology, which allows extraction of information from complex datasets in a robust way. Persistent homology assigns a module over a principal ideal domain to a one-parameter family of spaces obtained from the data. In applications, data often depend on several parameters, and in this case one is interested in studying the persistent homology of a multiparameter family of spaces associated to the data. While the theory of persistent homology for one-parameter families is well understood, the situation for multiparameter families is more delicate. Following Carlsson and Zomorodian, we recast the problem in the setting of multigraded algebra, and we propose multigraded Hilbert series, multigraded associated primes, and local cohomology as invariants for studying multiparameter persistent homology. Multigraded associated primes provide a stratification of the region where a multigraded module does not vanish, while multigraded Hilbert series and local cohomology give a measure of the size of components of the module supported on different strata. These invariants generalize in a suitable sense the invariant for the one-parameter case.

Keywords

  1. persistent homology
  2. topological data analysis
  3. primary decomposition
  4. Hilbert series

MSC codes

  1. 55B55
  2. 68U05
  3. 68Q17
  4. 13P25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, and C. Landi, Multidimensional size functions for shape comparison, J. Math. Imaging Vision, 32 (2008), pp. 161--179.
2.
N. Bourbaki, Elements of Mathematics, Commutative Algebra, Springer-Verlag, Berlin, Heidelberg, New York, 1998.
3.
G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), pp. 255--308.
4.
G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional persistence, J. Comput. Geom., 1 (2010), pp. 72--100.
5.
G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom., 42 (2009), pp. 71--93.
6.
W. Chacholski, M. Scolamiero, and F. Vaccarino, Combinatorial presentation of multidimensional persistent homology, J. Pure Appl. Algebra, 221 (2017), pp. 1055--1075.
7.
J. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 18566--18571.
8.
H. Edelsbrunner and J. Harer, Persistent homology---a survey, in Surveys on Discrete and Computational Geometry, Contemp. Math. 453, AMS, Providence, RI, 2008, pp. 257--282.
9.
D. Eisenbud, Commutative Algebra with a View towards Algebraic Geometry, Grad. Texts in Math. 150, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
10.
D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra, Grad. Texts in Math. 229, Springer-Verlag, Berlin, Heidelberg, New York, 2005.
11.
O. Gäfvert, Algorithms for Multidimensional Persistence, Master's Thesis, KTH, Stockholm, Sweden, 2016.
12.
R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. (N.S.), 45 (2008), pp. 61--75.
13.
K. Knudson, A refinement of multidimensional persistence, Homology Homotopy Appl., 10 (2008), pp. 259--281.
14.
M. Lesnick and M. Wright, Interactive Visualization of 2-D Persistence Modules, preprint, https://arxiv.org/abs/1512.00180v1, 2015.
15.
N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington, A roadmap for the computation of persistent homology, EPJ Data Sci., 6 (2017), 17.
16.
E. Miller, Data Structures for Real Multiparameter Persistence Modules, preprint, https://arxiv.org/abs/1709.08155, 2017.
17.
E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Grad. Texts in Math. 227, Springer-Verlag, Berlin, Heidelberg, New York, 2005.
18.
G. A. Reisner, Cohen--Macaulay quotients of polynomial rings, Adv. Math., 21 (1976), pp. 30--49.
19.
H. Schenck, Computational Algebraic Geometry, London Math. Soc. Stud. Texts 58, Cambridge University Press, Cambridge, UK, 2003.
20.
M. Scolamiero, W. Chachólski, A. Lundman, R. Ramanujam, and S. Öberg, Multidimensional persistence and noise, Found. Comput. Math., 17 (2017), pp. 1367--1406.
21.
G. Singh, F. Mémoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. Ringach, Topological analysis of population activity in visual cortex, J. Vis., 8 (2008), pp. 1--18.
22.
K. Turner, S. Mukherjee, and D. Boyer, Persistent homology transform for modeling shapes and surfaces, Inform. Infer., 3 (2014), pp. 310--344.
23.
C. Webb, Decomposition of graded modules, Proc. Amer. Math. Soc., 94 (1985), pp. 565--571.
24.
S. Weinberger, What is \dots persistent homology?, Notices Amer. Math. Soc., 58 (2011), pp. 36--39.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 439 - 471
ISSN (online): 2470-6566

History

Submitted: 2 November 2018
Accepted: 3 June 2019
Published online: 5 September 2019

Keywords

  1. persistent homology
  2. topological data analysis
  3. primary decomposition
  4. Hilbert series

MSC codes

  1. 55B55
  2. 68U05
  3. 68Q17
  4. 13P25

Authors

Affiliations

Funding Information

Emirates Foundation https://doi.org/10.13039/501100005930
National Science Foundation https://doi.org/10.13039/100000001 : 1818646
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/N510129/1, EP/K041096/1, EP/R018472-1, EP/P511377/1
Royal Society https://doi.org/10.13039/501100000288

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media