Abstract

In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural images. This notion of spatial redundancy must be defined locally. To do so, we define an auto-similarity function which, given one image, computes a dissimilarity measurement between patches. To derive a criterion for taking a decision on the similarity between two patches, we present an a contrario model. Namely, two patches are said to be similar if the associated dissimilarity measurement is unlikely to happen in a background model. Choosing Gaussian random fields as background models, we derive nonasymptotic expressions for the probability distribution function of similarity measurements. We present an algorithm in order to assess redundancy in natural images and discuss applications in denoising, periodicity analysis, and texture ranking.

Keywords

  1. patch
  2. statistical framework
  3. a contrario method
  4. image denoising
  5. texture
  6. periodicity analysis
  7. redundancy

MSC codes

  1. 60F05
  2. 60F15
  3. 60G15
  4. 60G60
  5. 62H15
  6. 62H35
  7. 65S05
  8. 65T50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Almansa, A. Desolneux, and S. Vamech, Vanishing point detection without any a priori information, IEEE Trans. Pattern Anal. Mach. Intell., 25 (2003), pp. 502--507.
2.
S. P. Awate and R. T. Whitaker, Unsupervised, information-theoretic, adaptive image filtering for image restoration, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), pp. 364--376.
3.
D. A. Bodenham and N. M. Adams, A comparison of efficient approximations for a weighted sum of chi-squared random variables, Stat. Comput., 26 (2016), pp. 917--928.
4.
J. Bruna and S. Mallat, Multiscale Sparse Microcanonical Models, preprint, https://arxiv.org/abs/1801.02013, 2018.
5.
A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Washington, DC, 2005, pp. 60--65.
6.
A. Buades, B. Coll, and J.-M. Morel, Non-local means denoising, Image Processing On Line, 1 (2011), pp. 208--212.
7.
F. Cao, Application of the Gestalt principles to the detection of good continuations and corners in image level lines, Comput. Vis. Sci., 7 (2004), pp. 3--13.
8.
R. W. Conners and C. A. Harlow, Toward a structural textural analyzer based on statistical methods, Comput. Graphics Image Process., 12 (1980), pp. 224--256.
9.
D. Coupier, A. Desolneux, and B. Ycart, Image denoising by statistical area thresholding, J. Math. Imaging Vis., 22 (2005), pp. 183--197.
10.
A. Criminisi, P. Pérez, and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Trans. Image Process., 13 (2004), pp. 1200--1212.
11.
G. R. Cross and A. K. Jain, Markov random field texture models, IEEE Trans. Pattern Anal. Mach. Intell., 5 (1983), pp. 25--39.
12.
K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080--2095.
13.
J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, J. Opt. Soc. Amer. A, 2 (1985), pp. 1160--1169.
14.
A. Davy, T. Ehret, J. Morel, and M. Delbracio, Reducing anomaly detection in images to detection in noise, in Proceedings of the 2018 IEEE International Conference on Image Processing, ICIP 2018, Athens, Greece, 2018, pp. 1058--1062.
15.
V. De Bortoli, A. Desolneux, B. Galerne, and A. Leclaire, Redundancy in Gaussian random fields, ESAIM Probab. Stat., submitted, 2018.
16.
C. Deledalle, L. Denis, and F. Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights, IEEE Trans. Image Process., 18 (2009), pp. 2661--2672.
17.
C.-A. Deledalle, L. Denis, and F. Tupin, How to compare noisy patches? Patch similarity beyond Gaussian noise, Int. J. Comput. Vis., 99 (2012), pp. 86--102.
18.
J. Delon and A. Desolneux, A patch-based approach for removing impulse or mixed Gaussian-impulse noise, SIAM J. Imaging Sci., 6 (2013), pp. 1140--1174, https://doi.org/10.1137/120885000.
19.
A. Desolneux, L. Moisan, and J. Morel, Meaningful alignments, Int. J. Comput. Vis., 40 (2000), pp. 7--23.
20.
A. Desolneux, L. Moisan, and J. Morel, Edge detection by Helmholtz principle, J. Math. Imaging Vis., 14 (2001), pp. 271--284.
21.
A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt Theory to Image Analysis: A Probabilistic Approach, Interdiscip. Appl. Math. 34, Springer-Verlag, New York, 2007.
22.
V. Duval, J.-F. Aujol, and Y. Gousseau, A bias-variance approach for the nonlocal means, SIAM J. Imaging Sci., 4 (2011), pp. 760--788, https://doi.org/10.1137/100790902.
23.
V. Duval, J.-F. Aujol, and Y. Gousseau, On the Parameter Choice for the Non-Local Means, preprint, hal-00468856, https://hal.archives-ouvertes.fr/hal-00468856/document, 2010.
24.
A. A. Efros and W. T. Freeman, Image quilting for texture synthesis and transfer, in Proceedings of the 28th Annual ACM Conference on Computer Graphics and Interactive Techniques, SIGGRAPH (Los Angeles, CA), ACM, New York, 2001, pp. 341--346.
25.
A. A. Efros and T. K. Leung, Texture Synthesis by Non-Parametric Sampling, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), IEEE, Washington, DC, 1999, pp. 1033--1038.
26.
R. Fablet, J.-M. Augustin, and A. Isar, Speckle denoising using a variational multi-wavelet approach, in Europe Oceans 2005 (Brest, France), IEEE, Washington, DC, 2005, pp. 539--544.
27.
B. Galerne, Y. Gousseau, and J. Morel, Random phase textures: Theory and synthesis, IEEE Trans. Image Process., 20 (2011), pp. 257--267.
28.
B. Galerne, A. Leclaire, and J. Rabin, A texture synthesis model based on semi-discrete optimal transport in patch space, SIAM J. Imaging Sci., 11 (2018), pp. 2456--2493, https://doi.org/10.1137/18M1175781.
29.
L. A. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using convolutional neural networks, in Proceedings of the 28th Annual Conference on Advances in Neural Information Processing Systems, Montreal, Quebec, Canada, 2015, pp. 262--270.
30.
B. Goossens, H. Luong, A. Pizurica, and W. Philips, An improved non-local denoising algorithm, in Proceedings of the International Workshop on Local and Non-Local Approximation in Image Processing, J. Astola, K. Egiazarian, and V. Katkovnik, eds., Lausanne, Switzerland, 2008, pp. 143--156.
31.
S. Grewenig, S. Zimmer, and J. Weickert, Rotationally invariant similarity measures for nonlocal image denoising, J. Vis. Commun. Image Represent., 22 (2011), pp. 117--130.
32.
R. M. Haralick, K. S. Shanmugam, and I. Dinstein, Textural features for image classification, IEEE Trans. Systems Man Cybernet., 3 (1973), pp. 610--621.
33.
K. He and J. Sun, Image completion approaches using the statistics of similar patches, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), pp. 2423--2435.
34.
A. Houdard, C. Bouveyron, and J. Delon, High-dimensional mixture models for unsupervised image denoising (HDMI ), SIAM J. Imaging Sci., 11 (2018), pp. 2815--2846, https://doi.org/10.1137/17M1135694.
35.
D. H. Hubel and T. N. Wiesel, Receptive fields of single neurones in the cat's striate cortex, J. Physiol., 148 (1959), pp. 574--591.
36.
J. P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika, 48 (1961), pp. 419--426.
37.
C. Kervrann and J. Boulanger, Local adaptivity to variable smoothness for exemplar-based image regularization and representation, Int. J. Comput. Vis., 79 (2008), pp. 45--69.
38.
V. Kwatra, A. Schödl, I. A. Essa, G. Turk, and A. F. Bobick, Graphcut textures: Image and video synthesis using graph cuts, ACM Trans. Graph., 22 (2003), pp. 277--286.
39.
M. Lebrun, An analysis and implementation of the BM3D image denoising method, Image Processing On Line, 2 (2012), pp. 175--213.
40.
M. Lebrun, A. Buades, and J. Morel, A nonlocal Bayesian image denoising algorithm, SIAM J. Imaging Sci., 6 (2013), pp. 1665--1688, https://doi.org/10.1137/120874989.
41.
M. Lebrun, M. Colom, A. Buades, and J. M. Morel, Secrets of image denoising cuisine, Acta Numer., 21 (2012), p. 475--576.
42.
A. Leclaire, Champs á phase aléatoire et champs Gaussiens pour la mesure de netteté d'images et la synthése rapide de textures, Ph.D. thesis, Université Paris Descartes, Paris, France, 2015.
43.
H. Lin, L. Wang, and S. Yang, Extracting periodicity of a regular texture based on autocorrelation functions, Pattern Recog. Lett., 18 (1997), pp. 433--443.
44.
H. Liu, Y. Tang, and H. H. Zhang, A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables, Comput. Statist. Data Anal., 53 (2009), pp. 853--856.
45.
Y. Liu, R. T. Collins, and Y. Tsin, A computational model for periodic pattern perception based on frieze and wallpaper groups, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2003), pp. 354--371.
46.
D. G. Lowe and T. O. Binford, Perceptual organization as a basis for visual recognition, in Proceedings of the National Conference on Artificial Intelligence, Washington, DC, 1983, pp. 255--260.
47.
Y. Lu, S. Zhu, and Y. N. Wu, Learning FRAME models using CNN filters, in Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, 2016, pp. 1902--1910.
48.
B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI, Vancouver, Canada, 1981, pp. 674--679.
49.
T. Matsuyama, S. Miura, and M. Nagao, Structural analysis of natural textures by fourier transformation, Comput. Vis. Graphics Image Process., 24 (1983), pp. 347--362.
50.
N. Mevenkamp and B. Berkels, Unsupervised and accurate extraction of primitive unit cells from crystal images, in Proceedings of the 37th German Conference on Pattern Recognition, GCPR 2015, Aachen, Germany, 2015, pp. 105--116.
51.
D. Micciancio, The shortest vector in a lattice is hard to approximate to within some constant, SIAM J. Comput., 30 (2001), pp. 2008--2035, https://doi.org/10.1137/S0097539700373039.
52.
G. Oh, S. Lee, and S. Y. Shin, Fast determination of textural periodicity using distance matching function, Pattern Recog. Lett., 20 (1999), pp. 191--197.
53.
M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu, Deformed lattice detection in real-world images using mean-shift belief propagation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), pp. 1804--1816.
54.
N. N. Ponomarenko, V. V. Lukin, M. Zriakhov, A. Kaarna, and J. Astola, An automatic approach to lossy compression of AVIRIS images, in Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, 2007, pp. 472--475.
55.
J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients, Int. J. Comput. Vis., 40 (2000), pp. 49--70.
56.
L. Raad, A. Desolneux, and J. Morel, A conditional multiscale locally Gaussian texture synthesis algorithm, J. Math. Imaging Vis., 56 (2016), pp. 260--279.
57.
J. Salmon, On two parameters for denoising with non-local means, IEEE Signal Process. Lett., 17 (2010), pp. 269--272.
58.
X. Sang and J. M. LeBeau, Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge, Ultramicroscopy, 138 (2014), pp. 28--35.
59.
L. Sifre and S. Mallat, Rotation, scaling and deformation invariant scattering for texture discrimination, in Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013, pp. 1233--1240.
60.
K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, preprint, https://arxiv.org/abs/1409.1556, 2014.
61.
F. Sur, An a-contrario approach to quasi-periodic noise removal, in Proceedings of the 2015 IEEE International Conference on Image Processing, IEEE, Washington, DC, 2015, pp. 3841--3845.
62.
J. J. van Wijk, Spot noise texture synthesis for data visualization, in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, ACM, New York, 1991, pp. 309--318.
63.
Y.-Q. Wang and J.-M. Morel, SURE guided Gaussian mixture image denoising, SIAM J. Imaging Sci., 6 (2013), pp. 999--1034, https://doi.org/10.1137/120901131.
64.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600--612.
65.
Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multiscale structural similarity for image quality assessment, in Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, vol. 2, IEEE, Washington, DC, 2003, pp. 1398--1402.
66.
A. T. A. Wood, An F approximation to the distribution of a linear combination of chi-squared variables, Comm. Statist. Simul. Comput., 18 (1989), pp. 1439--1456.
67.
Y. Wu, B. Tracey, P. Natarajan, and J. P. Noonan, Probabilistic non-local means, IEEE Signal Process. Lett., 20 (2013), pp. 763--766.
68.
G.-S. Xia, S. Ferradans, G. Peyré, and J.-F. Aujol, Synthesizing and mixing stationary Gaussian texture models, SIAM J. Imaging Sci., 7 (2014), pp. 476--508, https://doi.org/10.1137/130918010.
69.
S. C. Zhu, Embedding Gestalt laws in Markov random fields, IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999), pp. 1170--1187.
70.
S. C. Zhu, Y. N. Wu, and D. Mumford, Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling, Int. J. Comput. Vis., 27 (1998), pp. 107--126.
71.
S. W. Zucker and D. Terzopoulos, Finding structure in co-occurrence matrices for texture analysis, Comput. Graphics Image Process., 12 (1980), pp. 286--308.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 893 - 926
ISSN (online): 1936-4954

History

Submitted: 21 November 2018
Accepted: 15 April 2019
Published online: 23 May 2019

Keywords

  1. patch
  2. statistical framework
  3. a contrario method
  4. image denoising
  5. texture
  6. periodicity analysis
  7. redundancy

MSC codes

  1. 60F05
  2. 60F15
  3. 60G15
  4. 60G60
  5. 62H15
  6. 62H35
  7. 65S05
  8. 65T50

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media