Abstract

For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.

Keywords

  1. marked poset polytopes
  2. lattice polytopes
  3. tropical geometry

MSC codes

  1. 52B20
  2. 06A07
  3. 14T05
  4. 52B05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Ardila, T. Bliem, and D. Salazar, Gelfand--Tsetlin polytopes and Feigin--Fourier--Littelmann--Vinberg polytopes as marked poset polytopes, J. Combin. Theory Ser. A, 118 (2011), pp. 2454--2462, https://doi.org/10.1016/j.jcta.2011.06.004.
2.
T. Backhaus and C. Desczyk, PBW filtration: Feigin--Fourier--Littelmann modules via Hasse diagrams, J. Lie Theory, 25 (2015), pp. 815--856.
3.
G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, and M. Reineke, Linear degenerations of flag varieties, Math. Z., 287 (2017), pp. 615--654, https://doi.org/10.1007/s00209-016-1839-y.
4.
X. Fang and G. Fourier, Marked chain-order polytopes, European J. Combin., 58 (2016), pp. 267--282, https://doi.org/10.1016/j.ejc.2016.06.007.
5.
E. Feigin, G. Fourier, and P. Littelmann, PBW filtration and bases for irreducible modules in type $A_n$, Transform. Groups, 16 (2011), pp. 71--89, https://doi.org/10.1007/s00031-010-9115-4.
6.
E. Feigin, G. Fourier, and P. Littelmann, Favourable modules: Filtrations, polytopes, Newton--Okounkov bodies and flat degenerations, Transform. Groups, 22 (2017), pp. 321--352, https://doi.org/10.1007/s00031-016-9389-2.
7.
E. Feigin and I. Makhlin, Vertices of FFLV polytopes, J. Algebraic Combin., 45 (2017), pp. 1083--1110, https://doi.org/10.1007/s10801-016-0735-1.
8.
A. Fink and F. Rincón, Stiefel tropical linear spaces, J. Combin. Theory Ser. A, 135 (2015), pp. 291--331, https://doi.org/10.1016/j.jcta.2015.06.001.
9.
G. Fourier, Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence, J. Pure Appl. Algebra, 220 (2016), pp. 606--620, https://doi.org/10.1016/j.jpaa.2015.07.007.
10.
I. M. Gelfand and M. L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk SSSR, 71 (1950), pp. 825--828.
11.
N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups, 1 (1996), pp. 215--248, https://doi.org/10.1007/BF02549207.
12.
T. Hibi and N. Li, Unimodular equivalence of order and chain polytopes, Math. Scand., 118 (2016), pp. 5--12, https://doi.org/10.7146/math.scand.a-23291.
13.
T. Hibi, N. Li, Y. Sahara, and A. Shikama, The numbers of edges of the order polytope and the chain polytope of a finite partially ordered set, Discrete Math., 340 (2017), pp. 991--994, https://doi.org/10.1016/j.disc.2017.01.005.
14.
K. Jochemko and R. Sanyal, Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings, SIAM J. Discrete Math., 28 (2014), pp. 1540--1558, https://doi.org/10.1137/130944849.
15.
C. Pegel, The face structure and geometry of marked order polyhedra, Order, 35 (2017), pp. 467--488, https://doi.org/10.1007/s11083-017-9443-2.
16.
R. P. Stanley, Two poset polytopes, Discrete Comput. Geom., 1 (1986), pp. 9--23, https://doi.org/10.1007/BF02187680.
17.
G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math. 152, Springer, New York, 1995, https://doi.org/10.1007/978-1-4613-8431-1.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 611 - 639
ISSN (online): 1095-7146

History

Submitted: 26 November 2018
Accepted: 13 January 2020
Published online: 3 March 2020

Keywords

  1. marked poset polytopes
  2. lattice polytopes
  3. tropical geometry

MSC codes

  1. 52B20
  2. 06A07
  3. 14T05
  4. 52B05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.